Community & Economic Development Department

www.adcogov.org

4430 South Adams County Parkway 1st Floor, Suite W2000 Brighton, CO 80601-8204 PHONE 720.523.6800 Fax 720.523.6998

Re-submittal Form

Case Na	me/ Number:
Case Ma	anager:
Re-subn	nitted Items:
	Development Plan/ Site Plan
P	Plat
P	Parking/ Landscape Plan
E	Engineering Documents
S	Subdivision Improvements Agreement (Microsoft Word version)
	Dther:
* All re-su	abmittals must have this cover sheet and a cover letter addressing review comments.
Please no	ote the re-submittal review period is 21 days.
The cove	er letter must include the following information:
• R	Restate each comment that requires a response
• P	Trovide a response below the comment with a description of the revisions
• 10	dentify any additional changes made to the original document
For C	County Use Only:
Date	Accepted:
Staff	(accepting intake):

Resubmittal Active:	Engineering	Planner;	Right-of-Way	Addre	ssing;	Building Sa	fety;
Neighborhood Services	s; Environme	ntal; Parl	ks; Attorney; Fi	inance;	Plan C	Coordination	

APPLICANT RESPONSES TO ADAMS COUNTY – DEVELOPMENT REVIEW TEAM COMMENTS – 1ST REVIEW

Date of Comments: December 26, 2024

PROJECT NAME:	Maiker Boyers Rezoning and Preliminary Development Plan
LOCATION:	7295 Washington St.
DATE OF COMMENTS:	12/26/2024
PROJECT NUMBER:	PRC2024-00017
REVIEW TYPE:	Rezoning and Preliminary Development Plan Application

COMMENT RESPONSES ARE PROVIDED IN BLUE

Commenting D	ivision: Development Services, Planning
Name of Revie	wer: Brayan Marin, Senior Planner
Email: Bmarin@	2adcogov.org
PLN01	 The proposed request includes 117 units with a potential density of 54.8 dwelling units per acre (DU/AC). If approved, this would be the first development of this density in the county. However, staff has several concerns regarding this level of density, which are outlined below: Has the applicant engaged with RTD to explore potential collaboration on this project? Have discussions been held with any small or local grocery stores to consider occupying one of the commercial spaces on the first floor, thereby reducing trips outside the site? Please provide any relevant information demonstrating how the applicant is working to secure
	these potential collaborations.
	Response: On 1/22/2025, Maiker emailed RTD's engineering department and received an emailed response on 1/28/2025. In effect, the RTD would "definitely be interested in working with [Maiker] on having that bus stop improved", although the current bus stop's ridership "doesn't meet the warrants for us to install and maintain a shelter at this location [ourselves]". Therefore, we believe RTD to be open to collaboration but at Maiker's expense. Potential bus stop improvements are further addressed in comment ENG06.
	Maiker sees the need for a grocery option in the area and has reached out to a few local grocery options and Italian markets. While there is nothing to report at this time, we will continue ongoing efforts to find a solution—whether it be an onsite store or coordinating food deliveries. We have recently heard of Denver Housing Authority's Decatur Fresh building that has a grocery store and have reached out to DHA, as we are very interested in learning more about the structure. We believe they subsidize the grocery rent which is something Maiker could pursue. We do caution that in past projects, we have also had difficulty with attracting a small/local grocery store. Even small grocers require extensive logistics and loading zones that do not appear practical for this location. We are considering pursuing leads for a convenience store
	(which better fits the 1,622 sf space) but are hesitant as these typically offer only high-calorie

	alternatives to meals. (Maiker)
PLN02	The proposed dog park under consideration for the site does not qualify as active open space. The applicant will need to provide an alternative use for the proposed area in order to meet the active open space requirement. According to the county's Land Development Code, Section 11-02-438, "Active open space" is defined as: open space that may be improved, set aside, dedicated, designated, or reserved for recreational facilities such as swimming pools, play equipment for children, ball fields, court games, picnic tables, and similar amenities.
	Staff recommends relocating the dog park and the proposed nature-scaped playground area. This adjustment would allocate more active space for the future residents of the area.
	Response: The applicant is not currently counting the dog park area towards the active open space requirements. In addition, the design team feels strongly this type of use is the most beneficial for future residents of the building, who are more likely a younger, single demographic with pets. The unit mix in the building is proposed as 1-2 bedrooms, targeted to working adults, not families. Given the adjacency of the space to the interstate, and the obligation to keep the billboard in this area, we strongly feel the dog park would be the best use for this area of the site, providing a usable amenity that residents will appreciate given the location, despite it not 'counting' towards open space requirements for active use. RE: Sheet L2.00 - No Change. (SSA)
PLN03	The current site plan indicates that the southern courtyard will feature a flexible open space area. Will exercise equipment be provided for residents' use on-site? Additionally, how does the applicant plan to incorporate a pickleball court into this courtyard? Please provide a revised site plan demonstrating how a pickleball court can be accommodated within the southern courtyard.
	Response: Exercise equipment will be provided at the indoor fitness area adjacent to the exterior courtyards. This equipment could be brought out to the courtyard for specific classes/events. Fixed Exercise equipment is currently not planned for the courtyard. The intent is to keep this outdoor area flexible for a variety of quieter activities such as yoga classes, lawn games, etc.
	Upon additional consideration, the applicant does not feel pickleball is suitable for this courtyard due to noise concerns. This potential function has been removed from the plan notes on sheets L2.00 & A1.10. (SSA)
PLN04	Per section 4-16-01, A photometric plan will be required to review compliance with lighting standards.
	Response: The applicant has submitted a photometric plan with this resubmittal. RE: Sheets E1.10 - E2.30 (SSA)
PLN05	The west elevation drawings show a stair leading to the northern terrace. Will this area always remain open, or will there be a gate to restrict access and keep non-residents out of the communal space? Please provide clarification.
	Response: This stair is intended for emergency egress from the South courtyard only and access will be restricted to residents only. Plan notes added to sheets A1 10 & A2 00 (SSA)
PLN06	Please include a scale bar on all maps so that staff can confirm the shown setbacks on the following pages:
	A 1.00 Site Plan A 1.10 Ground and Second level Plans

	A 1.20 Third and Fourth Level Plan
	Response: A graphic bar scale has been added to all sheets identified above. (SSA)
PLN07	Include a title header for all sheets of the development plans that includes the name of the
	project and the sheet title. Additionally, include the case number (Case No.: PRC2024-00017 on
	the top right corner of each sheet.
	Response: Title header including the project name and sheet title, as well as the case number,
	have been added to all sheets. (SSA)
PLN08	The Development plan cover sheet needs to have the following signature blocks:
	- Planning Commission Approval
	- Board of County Commissioners Approval
	- Certificate of the clerk and recorder
	Response: The above signature blocks have been added to the cover sheet, A0.00. (SSA)
Commenting D	Division: Development Services, Right-of-way:
Name of Revie	w: Ian Cortez / Right-of-way Supervisor
Email: Icortez@	Padcogov.org
ROW1	Show the location of the reservation of easement for a concrete lined water ditch as listed in
	the Permitted Exceptions attached to the landowner's Special Warranty Deed. If this does not
	apply, please have the land surveyor coordinate with the title company to remove the
	exception on the submitted and updated title commitment or report.
	Response: Location call out in wrong spot. Updated ALTA provided and callout moved to
	correct location as shown on C1.00, C1.01, & C1.02. (R&R)
ROW2	Show the location of the right of access line ("A-line") to I-25 as defined in the Permitted
	Exceptions.
	Response: Location call out added on C1.00, C1.01, & C1.02. (R&R)
ROW3	Show the locations of the notes, easements and rights of way as shown on the plat of Amended
	Bover Coffee Subdivision.
	Response: Callouts added on C1.00. (R&R)
ROW/A	Per Item 5 of the Permitted Exceptions, there is a fence encroachment along the southwesterly
10114	property line. Please address how this will be remedied (i.e. remove or relocate fence or enter
	into a private fence agreement). If the fence is CDOT's discuss with CDOT and determine
	appropriate action
	Response: Voicemail left on 1/28 with CDOT right-of-way manager requesting information on
	fence and access line. Coordination ongoing. Called again 2/3/25 and got their voicemail
	again. CDOT Denver North Residences agents have been called and voicemails left. The
	existing fence is proposed to be removed and a new fence installed along the southwesterly
	property line, callouts added on C1.00 & C1.01. (R&R)
ROW5	Provide public drainage easements for the storm water quality ponds per engineering
	recommendations.

	Response: Proposed easements and callouts added on C1.01 & C1.02. (R&R)
ROW6	Provide ROW dedication for street improvements at the main entrance into the site.
	Response: Proposed right-of-way and callouts added on C1.01 and C1.02. (R&R)
ROW7	Adams County Public Works has a street improvement project scheduled for E73rd Avenue. Please reach out to Long Nguyen, Project Manager (720-523-6875 or publicworks@adcogov.org), for intersection layout and street improvement plans.
	Response: Voicemail left on 1/30. Email sent requesting plans on 1/30. Coordination ongoing (R&R)
Commenting Name of Revie Email: agajdys *** Comment Planning Com	Division: Development Services, Engineering: ew: Caio Gajdys / Civil Engineer I s@adcogov.org as ENG1 through ENG6 must be resolved prior to scheduling the Rezoning for hearing with the mission. ***
ENG1	Property IS in Adams County MS4 Stormwater Permit area. Proposed improvements appear to disturb more than one (1) acre of ground. A Stormwater Quality (SWQ) Permit WILL be required as long as (1) acre or more of ground is disturbed, and a State Permit COR400000 WILL be required as long as one (1) acre or more of ground is disturbed. Applicant is responsible for installation and maintenance of Erosion and Sediment Control BMPs. Builder/developer is responsible for adhering to all the regulations of Adams County Ordinance 11 regarding illicit discharge. The applicant should contact Juliana Archuleta, the County's Stormwater Program Manager, to inquire about obtaining a SWQ Permit. Ms. Archuleta can be contacted at 720-523-6869 or by email at miarchuleta@adcogov.org.
	Response: (R&R) Noted, MS4 Permit & SWQ will be completed prior to construction.
ENG2	Applicant must submit Sediment and Erosion Control plans that have been signed and stamped by a Professional Engineer licensed in the state of Colorado. Plans must also include all BMP details. See Small Construction Site Sediment and Erosion Control Guidelines, found at https://www.adcogov.org/sites/default/files/598.pdf for more information. Response: (R&R) BMP Detail Sheet added as C2.03 - C2.05.
ENG3	The applicant is proposing to install over three thousand square feet (3,000-sf) of impervious area on the whole project site. As such a drainage report and drainage plans in accordance to Chapter 9 of the Adams County Development Standards and Regulations (ACDSR), are required to be completed, signed, and stamped by a Professional Engineer (P.E.) licensed in the State of Colorado and submitted to Adams County for review and final approval. See Section 9-01-11 of the ACDSR for details regarding detention. Include a grading plan with the submittal to demonstrate that historic drainage will be maintained and there will be no adverse impacts on neighboring properties. Plans must also show the locations of all Erosion and Sediment Control BMPs that will be installed. Response: (R&R) Erosion and Sediment Control plans provided with PDP submittal as sheets C2.00, C2.01, and C2.02. Drainage Report and Plans to be provided at a later phase.
ENG4	Underground detention is proposed. In order for the County to consider allowing detention underground, the applicant must show that detention cannot be done above ground and

	subsequently justify their position. Water Quality, however, must all be done above ground;
	Response: (R&R) Water Quality is proposed above ground in rain gardens and detention is proposed below ground (shown on C1.01). There is not enough area on site for parking, so a parking reduction is being requested, and a pond would make this problem worse by taking away from the already reduced parking on site. Additionally, the historic low side of the site is the eastern portion near Washington Street. Since two entrances off of Washington St. are proposed for site circulation, the pond would not fit in these areas. Therefore, detention is proposed below grade as shown on C1.01 and C1.02.
ENG5	The development of this site appears to be generating more than twenty (20) Vehicle Trips Per Day. The applicant will be required to submit a Traffic Impact Study (TIS) and may be responsible for roadway improvements (i.e. curb, gutter and sidewalk). The level of TIS required will be determined by criteria identified in Table 8.15 within section 08-02-02 of Chapter 8 of the Adams County Development Standards and Regulations (ADCO DSR).
	Response: The applicant is submitting a Level 3 traffic study in this resubmittal. See attached Level 3 Traffic Impact Analysis Report document. (SSA)
ENG6	Applicant is requesting a reduction in required parking. To help support this request, the County would like to see the implementation of multi-modal transportation infrastructure to accommodate a reduced parking. Improvements include, but are not limited to, a bus shelter with full weather coverage, a new mast arm for east bound traffic signal, vehicle detection for traffic signal, traffic signal cameras, ADA accessible ramps at all four corners of Washington St. and E 73rd Ave., and striping improvements of said intersection including crosswalks.
	Response: Maiker understands this request and could respectfully offer to provide the new eastbound mast arm. We also considered the ADA ramps, but it appears all four corners of Washington already have this feature. We do not see vehicle detection/traffic cameras as a feasible donation for this project due to added cost, coordination, overhead, time, scheduling constraints, liability, and shrinking federal grants/expenditures and tax credit opportunities. The lead times are particularly risky for us if completion of the mast and road improvements become required prior to foundation construction. We are, of course, amenable to including the signal improvements if the County wishes to pay for and coordinate their delivery and installation.
	With regards to the bus shelter, Maiker has reached out to RTD's engineering department and received an emailed response on 1/28/2025. Per RTD, they "certainly wouldn't object as along as it was installed in a manner that didn't block access to the stop". Maiker is not opposed to providing this improvement, provided we are allowed access to do so and that this will not hold up our construction schedule in any way. Please advise on whether we need permission from our neighbor or if we can do so entirely though the County. (Maiker)
	*** Comments ENG7 through ENG11 must be resolved prior to scheduling the Rezoning for hearing with the Board of County Commissioners.***
ENG7	Prior to scheduling the BOCC hearing for PRC2024-00017, the developer is required to submit for review and receive approval of all Construction Documents (CDs), Drainage Report and Drainage Plan, and Traffic Impact Study (TIS). All CDs must meet the requirements of the Adams County Development Standards and Regulations (ADCO DSR). CDs shall include, at a minimum, onsite and public improvements construction plans. The Drainage Report and Drainage Plan must be in accordance with and meet the requirements of Chapter 9 of the ADCO DSR. The TIS must be in accordance with and meet the requirements of Chapter 8 of the ADCO DSR. The CD's, Drainage Report and Drainage Plan, and TIS must all be signed and stamped by a Professional Engineer licensed in the State of Colorado.

	Response: Noted. To be submitted as part of the FDP. (R&R)
ENG8	The applicant/developer shall submit to the Adams County Development Review Engineering
	division the following items:
	- Development Engineering Review Application
	- Development Engineering Review Fee
	- One (1) electronic copy of all Construction Documents
	- One (1) electronic copy of the Drainage Report and Drainage Plan
	- One (1) electronic copy of the Traffic Impact Study
	The Complete Development Engineering Review (EGR) Application can be found at the
	following URL:
	https://adcogov.org/sites/default/files/Development-Engineering-Review.pdf
	The Development Review fee can be found in the Community and Economic Development
	Department Fee Schedule, at the following URL:
	https://adcogov.org/sites/default/files/2022-
	12/final_2023%20Fee%20Schedule%20Planning_CED%20%28003%29.pdf
	The Engineering Checklist and Standard Details can be found within Appendix B of the ADCO
	DSR, at the following URL:
	https://adcogov.org/appendix-b-engineering-checklists-and-standard-details
	The Engineering Road Standards can be found within Appendix C of the ADCO DSR at the
	following URL:
	https://adcogov.org/appendix-c-engineering-road-standards
	Response: Noted. To be submitted once those stages of the project have been completed.
	(R&R)
ENG9	Low Impact Development (LID) features and measures must be shown on the Construction
	Documents. All construction projects shall reduce drainage impacts to the maximum extent
	practicable, and implement practices such as:
	1. On-site structural and non-structural BMPs to promote infiltration, evapo-transpiration or
	use of stormwater,
	2. Minimization of Directly Connected Impervious Area (MDCIA),
	3. Green infrastructure (GI),
	4. Preservation of natural drainage systems that result in the inflitration, evapo-transpiration of use of stormwater in order to protect water quality and equatic babitat
	Lise of vegetation, soils, and roots to slow and filter stormwater runoff
	6. Management of stormwater as a resource rather than a waste product by creating
	functional attractive and environmentally friendly developments
	7 Treatment of stormwater flows as close to the impervious area as possible
	ID shall be designed and maintained to meet the standards of these Regulations and the
	Urban Drainage and Flood Control District's Urban Storm Drainage Criteria Manual. Volume 3.
	Fore more information regarding LID Standards and Regulations, see Section 9-01-03-14 of the
	ADCO DSR.
	Response: Noted. Drainage analysis to be finalized during construction documents phase.
	(R&R)
ENG10	Prior to the issuance of any construction or building permits, the developer shall enter into a
	Subdivision Improvements Agreement (SIA) with the County and provide a security bond for all
	public improvements.
	Response: Noted. Please email the requested SIA form and advise on any deadlines. Please
	contact Chuck Christian at cchristian@maikerhp.org (Maiker)

ENG11	Applicant must submit legal descriptions, exhibits, and easement documents for any proposed
	easements on the site. These documents must be reviewed and approved by Development
	Engineering and recorded at the Clerk and Recorders Office. The record number along with the
	book and page number must be shown on the approved site plan.
	Response: Noted. To be submitted once farther into FDP development process. (R&R)
Commenting D	ivision: Environmental Programs
Name of Revie	w: Megan Grant
Email: MGrant	@adcogov.org
ENV1	The subject parcel is located within the Adams County Mineral Conservation Overlay (MCO) district, the purpose of which is to establish reasonable and uniform limitations, safeguards, and controls for the conservation and wise utilization of natural resources and for rehabilitation of excavated land. Land within this classification is designated as containing commercial
	mineral deposits in sufficient size parcels and in areas where extraction and rehabilitation can be undertaken while still protecting the health, safety, and welfare of the inhabitants of the area and the County. Although this parcel is located within the MCO district, the parcel is less than 5 acres and previously developed; therefore, the MCO restrictions are not applicable in this case.
	Response: Noted (SSA)
ENV2	The subject parcel is adjacent to the Lower Clear Creek Ditch. The applicant will need to work with the ditch authority if the ditch may be impacted by the proposed project and provide this information to Adams County for review.
	Response: (R&R) No impacts are expected to the ditch. See email below confirming requirements for site from Ditch company.

	Trevor Smith		
	From: Sent: To: Cc: Subject	LCC Ditch <office@lowerclearcreekditch.com> Thursday, January 23, 2025 2:44 PM Trevor Smith cchristian@markerhp.org: Tim Stackhouse; jschneck@sophersparn.com Be: EW Development Adjacent to Colorado Agriculture Dirch</office@lowerclearcreekditch.com>	
	Follow Up Flag: Flag Status:	Follow up Flagged	
	CAUTION: *Do not clic	ck links or open attachments unless you recognize the sender and know the content is safe.*	
	Hi Trevor,		
	I quickly looked over t However, the ditch co structures including bo	the plans and it does not seem that this application will impact the ditch. mpany must retain vehicle access to the ditch infrastructure and no permanent uildings or trees may be put within 20ft of the ditch bank.	
	Please let me know if	you have any questions - thank you for reaching out!	
	Pia Gerstle		
	Lower Clear Creek Di c. 720-556-5842 Website Note: This email is che Board meets on the fit	tch Company ecked periodically rst Thursday once a month.	
	On Thu, Jan 23, 2025 a	t 2:33 PM Matt Stockton < <u>Matt.Stockton@thorntonco.gov</u> >wrote:	
	From: Trevor Smith < <u>trev</u> Sent: Tuesday, January 2 To: Matt Stockton < <u>Matt</u> Cc: Chuck Christian < <u>cchu</u> < <u>tstackhouse@rrenginee</u> Subject: (External) Devel	vorsmith@rrengineers.com> 1, 2025 12:30 PM . <u>Stockton@thorntonce.gov></u> ristian@maikerhp.org>; Jacob Schneck < <u>ischneck@sophersparn.com</u> >; Tim Stackhouse- <u>ris.com</u> > opment Adjacent to Colorado Agriculture Ditch	
	Good afternoon Matt,		
	I am a civil engineer wo adjacent to the Lower shop and retail store o	orking on a project at 7295 Washinton St., Adams County, CO 80229 which is Clear Creek Ditch. The project will be a 117 unit apartment complex with a coffee In the main floor.	
	During our 1 st Prelimina gain approval of our pr	ary Development Plan review, it was requested that we coordinate with you to oject.	
	What is required to ge currently proposing gre wondered if you neede	ain approval of construction on our site adjacent to the ditch ? We are ading to send all water away from the ditch (see attached grading plan draft) but ad a written narrative or anything else.	
	Thank you for your help	p.	
	REAR ENGINEERSE SURVEYDRSE	revor Smith eistant Project Manager 350 J 37 Aur, Suite 310 Dunner, CD 80704 720 J99 4106 C. 720 995 5778 I C. 503 753 6730 eot smith@irecgineers.com www.renebleurs.com	
FNV3	The following cou	mments apply to applicants proposing food businesses	
21110		minente apply to applicante proposing rood pasinesses.	

	Illness sausing organisms are spread easily to the public through food and houerages. To reduce
	the risk of food borne illnesses, Adams County Health Department (ACHD) reviews plans for new and remodeled retail food establishments for conformance with the Colorado Retail Food Establishment Rules and Regulations. The applicant shall submit plans for the proposed food establishment to 7190 Colorado Blvd., Ste. 200, Commerce City, CO 80022, along with the appropriate Plan Review Packet found at https://adamscountyhealthdepartment.org/food- license-application.
	Response: Noted, the commercial space is intended to be constructed as Core & Shell as part of this project. The coffee shop and future retail are intended to be completed as a future tenant build-out and under a separate permit. Plans will be provided to ACHD at the appropriate time under the separate building permit. (SSA)
ENV4	Plans must be approved by ACHD before the start of construction; therefore, staff recommends completion of the ACHD plans review before issuance of a building permit for the construction. The applicant may call ACHD's Plan Review at 303-288-6816 to determine requirements and schedule inspections. Instructions for opening a retail food establishment can be found at https://adamscountyhealthdepartment.org/retail-food-licensing.
	Response: Noted, see response above (SSA)
ENV5	The following comments apply to demolition and construction:
	Exposure to air pollution is associated with numerous health problems including asthma, lung cancer, and heart disease. Construction and traffic in unpaved areas may contribute to increased fugitive dust emissions. Adams County recommends the applicant utilize all available methods to minimize fugitive dust during all phases of construction.
	Response: Noted. (SSA)
ENV6	State air quality regulations require that precautions be taken prior to demolition of buildings to evaluate the presence of asbestos fibers that may present a health risk. If asbestos is present, actions must be taken to prevent their release into the environment. State regulations also address control of ozone depleting compounds (chlorofluorocarbons) that may be contained in air conditioning or refrigerating equipment. The applicant shall contact the Colorado Department of Public Health and Environment Air Pollution Control Division (APCD) at (303) 692-3100 for more information. Additional information is available at http://www.cdphe.state.co.us/ap/asbestos.
	Response: Noted, all state regulations will be followed. (SSA)
	Buildings constructed prior to 1978 may contain lead paint. The Environmental Protection Agency's (EPA) 2008 Lead-Based Paint Renovation, Repair, and Painting (RRP) Rule (as amended in 2010 and 2011), aims to protect the public from lead-based paint hazards associated with renovation, repair, and painting activities. These activities can create hazardous lead dust when surfaces with lead paint, even from many decades ago, are disturbed, such as during demolition activities. More information can be found at https://www.epa.gov/lead/leadrenovation-repair- and-painting-program-rules and <u>https://www.epa.gov/lead</u>
	Response: Noted. (SSA) A demolition parmit is required for fire damaged buildings to ansure proper removal of debric
ENVÖ	utility disconnection, and compliance with safety regulations, even if the structure is completely destroyed by fire. Additionally, an inspection by a licensed engineer may be necessary to assess the structural integrity of the remaining foundation if rebuilding is planned. Proper debris removal and disposal plans must be outlined as part of the demolition permit application. Additional information is available at https://adcogov.org/building-permit-and- contractor-registration.

	Response: Noted, a demolition permit will be obtained at the appropriate stage of the project. (SSA)	
ENV9	The applicant/operator shall follow all applicable hazardous materials and waste management regulations to ensure proper management of hazardous materials and waste such that they do not present a significant actual or potential hazard to public health, safety, or environment.	
	Response: Noted, all applicable hazardous materials and waste management regulations will be followed. (SSA)	
ENV10	The following comments apply to design and are included as recommendations to be considered:	
	The applicant may want to consider crosswalk(s) where pedestrian access and/or sidewalk crosses internal site drive lanes coming off Washington Street, as this pedestrian crossing may not be easily visible to drivers since it is not at a street intersection. The simplest crossing design would be to post signs and provide striping on the pavement. A safer design alternative would be to provide a raised pedestrian crossing, with striping and a contrasting color, to clearly delineate the crossing. The raised crossing will provide the added benefit of slowing traffic and improving driver awareness of the crossing.	
	Response: Noted, the team intends to provide striping, lighting, signage, and contrasting color to clearly delineate the crossing. Refer to drawings C1.01 & A1.00. (SSA+R&R)	
ENV11	Where public transportation systems exist, direct pedestrian access should be provided to increase transit use and reduce unnecessary vehicle trips, and related vehicle emissions. The pedestrian/bicycle networks should be integrated with the existing and future transit plans for the area.	
	Response: Noted, the applicant is providing pedestrian and multi-model path connections from the site to adjacent uses to encourage less vehicular traffic. (SSA)	
	RTD BUS STOP	
	Transmer Transm	
ENV12	The way that buildings are designed impacts health through the materials used and the amount	
	of volatile organic compounds (VOCs) or other narmful chemicals that they contain; the air and water quality; the amount of daylight; and even by encouraging physical activity and social interaction. Adams County encourages the applicant to consider incorporating design standards into the development to ensure a health-promoting environment. The applicant could pursue building certifications such as LEED, WELL Building Standard, Certified Healthy, or Living Building Challenge.	

ENV13 Adams County encourages community designs that make it easy for people to include regular physical activity, such as walking and bicycling, in their daily routines. Because research shows that the way we design our communities can encourage regular physical activity, community plans that incorporate pedestrian and bicycle and bicycle amenities that support the use of a broader pedestrian and bicycle network are strongly encouraged. Neighborhoods best encourage residents to walk and/or bicycle as part of their daily routine when they contain a system of well-designed and well-lit sidewalks and trails that connect with destinations in and adjacent t the community. Response: Noted, see response to ENV 11 above, the applicant is passionate about providing a healthy and supportive community for residents to safely and effectively connect with the adjacent community/ amenities. (SSA) ENV14 Research shows that people are more likely to use pedestrian amenities when these features are attractive and feel safe. One way to improve the feeling of safety is by providing pedestria scale lighting. Adams County encourages the use of appropriate lighting in the area and along access routes. ENV15 Bicycle parking locations and design should allow for safe access from external roads and sidewalks and to/from buildings and internal pedestrian paths. Response: Noted, see response ENV 11 above. See sheets A1.00 & A1.10 for bike parking locations and connections to existing multi-model networks. (SSA) Adams County Fire Rescue, Fire Prevention Bureau Name of Review: Carla Gutierrez Email: fireprevention@acfierrez Email: fireprevention@acfierrez Email: f		
Response: Noted, see response to ENV 11 above, the applicant is passionate about providing a healthy and supportive community for residents to safely and effectively connect with the adjacent community/ amenities. (SSA) ENV14 Research shows that people are more likely to use pedestrian amenities when these features are attractive and feel safe. One way to improve the feeling of safety is by providing pedestria scale lighting. Adams County encourages the use of appropriate lighting in the area and along access routes. Response: Noted, pedestrian scale lighting is provided as shown on the photometric plans, sheets E1.10 and E1.20. (SSA) ENV15 Bicycle parking locations and design should allow for safe access from external roads and sidewalks and to/from buildings and internal pedestrian paths. Response: Noted, see response ENV 11 above. See sheets A1.00 & A1.10 for bike parking locations and connections to existing multi-model networks. (SSA) Adams County Fire Rescue, Fire Prevention Bureau Name of Review: Carla Gutierrez Email: fireprevention@acfpd.org General The 2018 International Fire Code is the current fire code adopted within the city and all development must be in compliance with its requirements. The 2018 IFC can be accessed online for free by going to https://codes.iccsafe.org/public/document/IFC2018. Amendments to this code can be located by going to http://www.adcogov.org/sites/default/files/Ordinance%20No.%204_1.pdf.		
ENV14 Research shows that people are more likely to use pedestrian amenities when these features are attractive and feel safe. One way to improve the feeling of safety is by providing pedestria scale lighting. Adams County encourages the use of appropriate lighting in the area and along access routes. Response: Noted, pedestrian scale lighting is provided as shown on the photometric plans, sheets E1.10 and E1.20. (SSA) ENV15 Bicycle parking locations and design should allow for safe access from external roads and sidewalks and to/from buildings and internal pedestrian paths. Response: Noted, see response ENV 11 above. See sheets A1.00 & A1.10 for bike parking locations and connections to existing multi-model networks. (SSA) Adams County Fire Rescue, Fire Prevention Bureau Name of Review: Carla Gutierrez Email: fireprevention@acfpd.org General 1 The 2018 International Fire Code is the current fire code adopted within the city and all development must be in compliance with its requirements. The 2018 IFC can be accessed online for free by going to https://codes.iccsafe.org/public/document/IFC2018 . Amendments to this code can be located by going to https://www.adcogov.org/sites/default/files/Ordinance%20No.%204_1.pdf .		
Response: Noted, pedestrian scale lighting is provided as shown on the photometric plans, sheets E1.10 and E1.20. (SSA) ENV15 Bicycle parking locations and design should allow for safe access from external roads and sidewalks and to/from buildings and internal pedestrian paths. Response: Noted, see response ENV 11 above. See sheets A1.00 & A1.10 for bike parking locations and connections to existing multi-model networks. (SSA) Adams County Fire Rescue, Fire Prevention Bureau Name of Review: Carla Gutierrez Email: fireprevention@acfpd.org General 1 The 2018 International Fire Code is the current fire code adopted within the city and all development must be in compliance with its requirements. The 2018 IFC can be accessed online for free by going to https://codes.iccsafe.org/public/document/IFC2018 . Amendments to this code can be located by going to http://wttps//www.adcogov.org/sites/default/files/Ordinance%20No.%204_1.pdf .		
ENV15 Bicycle parking locations and design should allow for safe access from external roads and sidewalks and to/from buildings and internal pedestrian paths. Response: Noted, see response ENV 11 above. See sheets A1.00 & A1.10 for bike parking locations and connections to existing multi-model networks. (SSA) Adams County Fire Rescue, Fire Prevention Bureau Name of Review: Carla Gutierrez Email: fireprevention@acfpd.org General 1 1 The 2018 International Fire Code is the current fire code adopted within the city and all development must be in compliance with its requirements. The 2018 IFC can be accessed online for free by going to https://codes.iccsafe.org/public/document/IFC2018 . Amendments to this code can be located by going to http://www.adcogov.org/sites/default/files/Ordinance%20No.%204_1.pdf.		
Response: Noted, see response ENV 11 above. See sheets A1.00 & A1.10 for bike parking locations and connections to existing multi-model networks. (SSA) Adams County Fire Rescue, Fire Prevention Bureau Name of Review: Carla Gutierrez Email: fireprevention@acfpd.org General 1 The 2018 International Fire Code is the current fire code adopted within the city and all development must be in compliance with its requirements. The 2018 IFC can be accessed online for free by going to https://codes.iccsafe.org/public/document/IFC2018 . Amendments to this code can be located by going to http://www.adcogov.org/sites/default/files/Ordinance%20No.%204_1.pdf .		
Adams County Fire Rescue, Fire Prevention Bureau Name of Review: Carla Gutierrez Email: fireprevention@acfpd.org General 1 The 2018 International Fire Code is the current fire code adopted within the city and all development must be in compliance with its requirements. The 2018 IFC can be accessed online for free by going to https://codes.iccsafe.org/public/document/IFC2018 . Amendments to this code can be located by going to http://www.adcogov.org/sites/default/files/Ordinance%20No.%204_1.pdf .		
Name of Review: Carla Gutierrez Email: fireprevention@acfpd.org General 1 The 2018 International Fire Code is the current fire code adopted within the city and all development must be in compliance with its requirements. The 2018 IFC can be accessed online for free by going to https://codes.iccsafe.org/public/document/IFC2018 . Amendments to this code can be located by going to http://wdf .		
Email: fireprevention@actpd.org General 1 The 2018 International Fire Code is the current fire code adopted within the city and all development must be in compliance with its requirements. The 2018 IFC can be accessed online for free by going to https://codes.iccsafe.org/public/document/IFC2018 . Amendments to this code can be located by going to http://www.adcogov.org/sites/default/files/Ordinance%20No.%204_1.pdf .		
1 The 2018 International Fire Code is the current fire code adopted within the city and all development must be in compliance with its requirements. The 2018 IFC can be accessed online for free by going to https://codes.iccsafe.org/public/document/IFC2018 . Amendments to this code can be located by going to http://www.adcogov.org/sites/default/files/Ordinance%20No.%204_1.pdf .		
development must be in compliance with its requirements. The 2018 IFC can be accessed online for free by going to <u>https://codes.iccsafe.org/public/document/IFC2018</u> . Amendments to this code can be located by going to http://www.adcogov.org/sites/default/files/Ordinance%20No.%204_1.pdf.		
Response: Noted. (SSA)		
2 Site and building design and construction shall be in accordance with the provisions of the 201 International Fire Code (IFC) as adopted by Adams County. All construction shall be in accordance with IFC Chapter 33, Fire Safety During Construction and Demolition.		
 Please be aware that these comments are subject to change as more information is received or if there are changes to the plans during subsequent reviews. 		
Response: Noted. (SSA)		
Access Requirements		
4 Approved access roads must be constructed prior to any vertical construction and/or to combustible materials being delivered to the site, whichever comes first. Temporary access roads are prohibited unless specifically approved by the Fire District. Fire apparatus access must be designed and maintained to support the imposed loads of fire apparatus (i.e. 85,000 lbs), and must have a surface that provides all-weather driving capabilities. Vehicle access shall be provided to within 150 feet of temporary or permanent fire department connections. Note only.		
Response: Noted. (SSA)		
 Fire apparatus access roads shall be a minimum of 24' wide or 26' when a hydrant is present of the building exceeds 30' in height. Note only: Appears to be met on the preliminary plan provided. 		

	Response: Noted, a 26' wide fire apparatus access road is provided along the North side of	
6	the building, Sheet CI.01 and A1.00. (SSA)	
D	File apparatus access roads shall be within 150° of all ground level exterior portions of the	
	Note only: Appears to be met on the preliminary plan provided.	
	Response: Noted (SSA)	
7	Any dead-end fire apparatus access road in excess of 150' shall be provided with an approved	
7	turnaround	
	Note Only: A turn around is required. The reviewed preliminary plan does show an approved	
	turn around.	
	*No parking will be allowed along the turn around. Appropriate "No Parking" signage will	
	also need to be posted throughout the site. This will need to be indicated on the engineered	
	civil plans. An auto-turn path analysis utilizing our truck specification (attached) will also be	
	required showing the ease of maneuverability for the turn around.*	
	Response: (R&R) Noted "No Parking" signage added to C1.01 and the auto-turn path analysis	
	has been provided to the fire department as a separate exhibit.	
8	Any temporary construction or permanent security gates shall be a minimum of 24 feet and a	
	no parking fire lane sign shall be posted on the gate. The gates shall also have a Knox key switch	
	installed for emergency operation if automatic.	
	Note only.	
	Response: Noted. (SSA)	
9	New and existing buildings shall have approved address numbers, building numbers, or	
	approved building identification placed in a position that is plainly legible and visible from the	
	street or road fronting the property. These numbers shall contrast with their background.	
	Numbers shall be a minimum of 4 inches high with a minimum stroke width of 0.5 inch. Please	
	be aware that the size of the number may need to be larger than 4 inches is not clearly visible	
	from the street or road. A temporary sign must be provided if the permanent signage is not yet	
	Note only	
	Response: Noted (SSA)	
10	Developments of one- or two-family dwellings where the number of dwelling units exceeds 30	
	shall be provided with two separate and approved fire apparatus access roads.	
	a. Exceptions:	
	i. Where there are more than 30 dwelling units on a single public or private	
	fire apparatus access road and all dwelling units are equipped throughout	
	with an approved automatic sprinkler system in accordance with Section	
	903.3.1.1, 903.3.1.2 or 903.3.1.3, access from two directions shall not be	
	required. ii. The number of dwelling units on a single fire apparatus access	
	road shall not be increased unless fire apparatus access roads will connect	
	with future development, as determined by the fire code official.	
	b. Where two fire apparatus access roads are required, they shall be placed a distance	
	apart equal to not less than one-half of the length of the maximum overall diagonal	
	dimension of the property or area to be served, measured in a straight line between	
	accesses.	
	This project does not provide two separate and approved fire apparatus access roads and	
	huilding. We recommend charing this information with the water district as early as possible to	
	begin planning the underground fire sprinkler supply line	
<u> </u>	Response: Noted, an approved automatic fire sprinkler system will be provided (SSA)	
Fire Protection	Water Supply and Hydrants	
11	11 Water mains and all required hydrants shall be installed before the delivery of combustible	
	materials to the site. Hydrants shall be maintained operational at all times thereafter, unless	

	alternate provisions for water supply are approved by the Fire District. Any private fire service
	mains and fire hydrants and all fire sprinkler service lines shall be installed by a State of
	Colorado Licensed Fire Suppression System Contractor – Underground Contractor and meet the
	requirements of National Fire Protection Association Standard 24.
	Note only.
	Response: Noted. (SSA)
12	Plans for the underground fire sprinkler service line shall be submitted for review and approval
	to ACFR. A current list of registered contractors can be found by going to
	https://www.colorado.gov/dfpc/fire-suppression-system-contractors. Once installed, all
	underground fire sprinkler service lines must be inspected by an ACFR inspector before
	covering.
	Note only.
	Response: Noted. (SSA)
13	Unobstructed access to fire hydrants shall be maintained at all times. Fire department
	personnel shall not be deterred or hindered from gaining immediate access to fire protection
	equipment or fire hydrants. A 3-foot (radius) clear space shall be maintained around the
	circumference of fire hydrants. Within that 6-foot diameter circle and within a 6-foot-wide path
	leading to the 4.5-inch outlet of a hydrant, vegetation shall be no higher than 4 inches above
	grade. The unobstructed vertical clearance within that 6-foot circle and 6-foot approach path
	shall not be less than 7 feet, unless otherwise approved by the Fire District.
	Note only.
	Response: Noted. (SSA)
14	A fire hydrant shall be located within 400' (un-sprinklered building) or 600' (fully sprinkled
	building) of all ground level exterior portions of the building.
	Fire hydrants are not shown on the reviewed preliminary plan. Fire hydrants will need to be
	shown on the engineered civil plans.
	Response: (R&R)
	Currently confirming with fire department if a new hydrant is required, or if the two existing
	hydrants within 600' of the site will suffice. Hydrants will be shown on engineered civil plans.
	Coordination ongoing since 1/24/25.
15	The number and distribution of fire hydrants is based on the required fire flow. You may refer
	to Appendix C of the 2018 IFC for guidance.
	Response: (R&R)
	Per the fire department's calculations in comment 16, 1 hydrant will suffice. Coordination is
16	Ongoing to contirm this.
10	shown on the angineered civil plans. Plans indicate the construction type for the proposed
	building will be of IA and the building is 135,997 square feet in size. The required fire flow for
	the building is 4 000 GPM $@$ 20 PSL A fire flow reduction is allowed because the building will be
	equipped with an approved automatic fire sprinkler system. With the fire flow reduction, the
	required fire flow is 1 000 GPM and hydrants are to be spaced as required in code section
	C102.1.
	Response: (R&R)
	Noted.
Automatic Fire	Sprinkler System
17	As stated in the 2018 International Fire Code as adopted and amended by Adams County, an
	approved automatic fire sprinkler system is REQUIRED.
	Response: Noted. (SSA)
Other Helpful	nformation
18	Please be aware that the fire code does not specify building fire rating or set-back
	requirements. These are located within the building code and therefore are out of our scope.

	This preliminary review does not approve anything covered under the building code. These		
	requirements need to be verified with the County's Building and Planning Departments.		
	Response: Noted. (SSA)		
19	Please be aware that we are a separate entity from the County and anytime you submit to the		
	county, you will need to submit to us separately utilizing our online portal. The link is below:		
	https://go.citygrows.com/acfr-fire-prevention		
	Response: Noted. (SSA)		
20	The following reviews and permits are often needed for new development projects:		
	a. Site Development and Water Plans		
	i. Civil Plans		
	ii. Utility Plans		
	iii. Auto-turn Exhibit (use attached apparatus specifications)		
	b. New Construction Building Plans		
	i. Architectural		
	c. Fire Protection System Plans		
	i. Fire Sprinkler		
	Response: Noted. (SSA)		
21	Site development plans must be reviewed and approved before plans for all buildings and fire		
	protection systems are submitted to us for review and permitting. All fees (permit and impact)		
	shall be paid at time of permit pick-up.		
	Response: Noted. (SSA)		

LIST OF ADDITIONAL CHANGES MADE TO ORIGINAL SUBMISSION:

GENERAL:

1. A0.01 – Minor change to overall building area under Zoning Data & Sheet Index updated to include added sheets.

CIVIL:

- 1. C0.01 Sheet index updated to include Erosion and Sediment Control Detail Sheets
- 2. C1.01 Additional transformer added to site plan, as dictated by updated preliminary electrical load estimates and revisions made to internal pedestrian crossing to be high-emphasis.
- 3. C2.03, C2.04, & C2.05 Sheets added to include Erosion and Sediment Control Detail Sheets

LANDSCAPE:

- 1. L1.00 Proposed tree counts updated to reflect minor landscape changes in Adams County Landscape Requirements Table.
- 2. L2.00 Addition site furnishing added throughout site per plan development. Proposed nature-scaped play-area West of building revised to gathering area with shade sail, picnic tables and bench due to projected target demographic. Refinements made to elevated courtyard planting and proposed uses.

ARCHITECTURAL:

- 1. A1.00 Minor updates to retail core & shell interior layout, additional interior bike storage added, and bike parking numbers updated accordingly.
- 2. A1.10 Minor updates to retail core & shell interior layout and additional interior bike storage added to Level 1 Plan. Refinements made to elevated courtyard planting and proposed uses on Level 2 Plan.
- 3. A2.00 Additional development made to exterior building elevations specifically window layout and design.
- 4. A2.01 Additional building elevations of elevated courtyards added as part of building design development.
- 5. A2.10 Conceptual renderings updated to reflect development of building exterior.
- 6. A2.11 Conceptual renderings updated to reflect development of building exterior.

ELECTRICAL:

1. E1.10 – E2.30 – Site Photometric and Lighting cut sheets added per PLN04 comment.

PDP & REZONING SUBMITTAL - REV. 01 - 02.07.2025 7295 WASHINGTON ST, ADAMS COUNTY, CO 80229

<u>OWNER</u>

MAIKER HOUSING PARTNERS 3033 W. 71ST AVE., SUITE 1000 WESTMINSTER, CO 80030

<u>CONTACT</u> CHUCK CHRISTIAN CCHRISTIAN@MAIKERHP.ORG

ARCHITECT

SOPHER SPARN ARCHITECTS, LLC. 2505 WALNUT STREET, SUITE 200 BOULDER, COLORADO 80302 P. 303.442.4422

<u>CONTACT</u> **ERIN BAGNALL** EBAGNALL@SOPHERSPARN.COM

CIVIL ENGINEER

R&R ENGINEERS 1635 W. 13TH AVE., SUITE 310 DENVER, CO 80204 P. 303.753.6730

<u>CONTACT</u> CLIF DAYTON CDAYTON@RRENGINEERS.COM

NOTICE: DUTY OF COOPERATIO RELEASE OF THESE DOCUMEN? Maiker Housina Partners

THESE DOCUMENTS CONTEMPLATES FURTHER COOPERATION AMONG THE OWNER, HIS CONTRACTOR, AND THE ARCHITECT. DESIGN AND TION ARE COMPLEX. ALTHOUGH THE ARCHITECT AND HIS CONSULTANTS HAVE PERFORMED THEIR SERVICES WITH DUE CARE AND THEY CANNOT GUARANTEE PERFECTION. COMMUNICATION IS IMPERFECT AND EVERY CONTINGENCY CANNOT BE ANTICIPATED. ANY MISSIONS, OR DISCREPANCY DISCOVERED BY THE USE OF THESE DOCUMENTS SHALL BE REPORTED IMMEDIATELY TO THE ARCHITECT. LURE TO NOTIFY THE ARCHI DTICE TO THE ARCHITECT SHALL RELIEVE THE ARCHITECT FROM RESPONSIBILITY FOR ALL CONSEQUENCES ARRIVING OUT OF SUCH CHANGES THE DESIGNS AND PLANS ARE COPYRIGHT AND ARE NOT TO BE USED OR REPRODUCED WHOLLY OR IN PART WITHOUT THE WRITTEN PERMISSION OF SSARCHITECTS. THE DRAWINGS AND SPECIFICATIONS ARE INSTRUMENTS OF SERVICE AND SHALL REMAIN THE PROPERTY OF THE ARCHITECT WHETHER THE PROJECT FOR WHICH THEY ARE MADE IS EXECUTED OR NOT. COPYRIGHT SSARCHITECTS. DO NOT SCALE FROM DRAWING. VERIFY ALL DIMENSIONS ON SITE.

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

MAIKER BOYERS COVER SHEET

CONCEPTUAL RENDERING

LANDSCAPE ARCHITECT

OUTDOOR DESIGN GROUP 5690 WEBSTER ST. ARVADA, CO 80002 P. 303.993.4811

<u>CONTACT</u> TODD RUTHERFORD TRUTHERFORD@ODGDESIGN.COM

GENERAL CONTRACTOR

DENEUVE CONSTRUCTION 2344 SPRUCE ST. BOULDER, CO 80302 P. 303.444.6633

<u>CONTACT</u> MARTY JOHNSON MJOHNSON@DENEUVECONSTRUCTION.COM

COSTS, A FAILURE TO COOPERATE BY SIMPL

No. Date MAIKER BOYERS

7295 WASHINGTON ST., ADAMS COUNTY, CO 80229

CERTIFICATE OF OWNERSHIP (X), BEING THE OWNER OR REPRESENTATIVE OF THE MAIKER BOYERS SITE LOCATED IN THE COUNTY OF ADAMS, STATE OF CÓLORADO, HEREBY SUBMITS THIS PRELIMINARY DEVELOPMENT PLAN AND REZONING SUBMITTAL AND AGREES TO PERFORM UNDER THE TERMS NOTED HEREON.

(OWNER'S SIGNATURE) STATE)

COUNTY) CITY)

NOTARY PUBLIC

MY COMMISION EXPIRES:

PLANNING COMMISION APPROVAL:

CHAIRMAN

BOARD OF COUNTY COMMISSIONERS APPROVAL: APPROVED BY THE ADAMS COUNTY BOARD OF COMMISSIONERS THIS , DAY OF , 20 .

CHAIRMAN

CERTIFICATE OF THE CLERK AND RECORDER: THIS MAJOR PUD AMENDMENT WAS FILED FOR RECORD IN THE OFFICE OF THE ADAMS COUNTY CLERK AND RECORDER IN THE STATE OF COLORADO AT ____M. ON THE _____, DAY , 20

COUNTY CLERK AND RECORDER

CONSULTANT

CASE NO. <u>PRC2024-00017</u>

THE OWNERS SIGNATURE(S) SHALL BE ACKNOWLEDGED AS FOLLOWS:

THE FOREGOING OWNERSHIP CERTIFICATE WAS ACKNOWLEDGED BEFORE ME THIS ____, DAY OF ______, 20_____, 20_____,

APPROVED BY THE ADAMS COUNTY PLANNING COMMISSION THIS , DAY OF . 20

PDP & REZONING SUBMITTAL

02.07.2025

A 0.00

ZONING DATA

BUILDING CODE: IBC USE AND OCCUPANCY:

CONSTRUCTION TYPE:

ZONING DESIGNATION: SPRINKLER SYSTEM: LOT AREA: (PER SURVEY) PROPOSED DWELLING UNITS: DWELLING UNITS PER ACRE:

EXISTING BUILDING COVERAGE: PROPOSED BUILDING COVERAGE PROPOSED BUILDING AREA:

EXISTING BUILDING HEIGHT: PROPOSED BUILDING HEIGHT: NUMBER OF STORIES:

PROPOSED SETBACKS: FRONT (WASHINGTON ST.) REAR

SIDE - SOUTH SIDE - NORTH

ROOF FIRE CLASS: ROOF DESIGN WIND SPEED (V 3SEC ASD): ROOF EXPOSURE CATEGORY: SEISMIC DESIGN CATEGORY: SNOW LOAD:

PARKING PROVIDED: TOTAL VEHICLE PARKING STANDARD COMPACT

BICYCLE PARKING: TOTAL BICYCLE PARKING LONG-TERM SHORT-TERM

2018 INTERNATIONAL BUILDING CODE

R-2 (APARTMENT UNITS) B (COFFEE SHOP) M (MERCANTILE RETAIL)

(4) STORIES TYPE VA OVER (1) STORY TYPE IA EXISTING: I-1; PROPOSED: PUD NFPA 13, PER SECTION 903.3.1.2

92,862 SQ. FT. (2.132 ACRES) 117 DUS 54.9 DUAC

30,285 SQ. FT. 36,013 SQ. FT. 135,839 SQ. FT.

28'-0" (WASHINGTON SCHOOL BUILDING) 62'-0" 5 STORIES: (4) STORIES TYPE VA OVER (1) STORY TYPE IA

50'-0" NOT APPLICABLE 9'-9" 70'-4" CLASS B 130 MPH

30 PSF

148 SPACES 117 (79%) 31 (21%)

102 70 32

VICINITY MAP

ABBREVIATIONS

F.F. PPROX. RCH.	ABOVE FINISHED FLOOR APPROXIMATE ARCHITECT BEAM	INSUL. INT. IDF
0.	BOTTOM OF	JC
.DG	BUILDING	LAV
र	BRICK	LP
\В.	CABINET	MECH.
_R.	CLEAR	MEP
ΛU	CONCRETE MASONRY UNIT	MEZZ.
JL.	COLUMN	MFR.
DNC.	CONCRETE	MIN.
JNT.	CONTINUOUS	MIR.
JNIR.		MIL.
		0/
vv. ^		0.0.
A.		
	DOWINGFOUT	
FC	ELECTRICAL	
EV	ELECTRICAL	PTD
DMT	EQUIPMENT	OTY
(T	EXTERIOR	RD
AP	FIRE ALARM ANNUNCIATOR PANEL	RE.
CP	FIRE ALARM CONTROL PANEL	REINF.
)	FLOOR DRAIN	REQ'D
C	FIRE DEPARTMENT CONNECTION	R.O.
C	FIRE EXTINGUISHER CABINET	S.F.
BATT	FIBERGLASS BATT	SHT'G
G.	FOOTING	SIM.
.R.	FLOOR	SQ.
.R'G	FLOORING	STL.
-	FOOT	STOR.
4	GAUGE	STRUCT
ALV.	GALVANIZED	T&G
	GLASS	Т.О.
NB	GYPSUM WALL BOARD	TEMP.
DRZ.	HORIZONTAL	TYP.
-	HIGH POINT (ROOF)	T.P.O.
		U.N.O.
AC	HEATING, VENTILATION, & AIR	VERT.
		VVD.

INSULATION INTERIOR INTERMEDIATE DISTRIBUTION FRAME (ELECTRICAL) **JANITOR CLOSET** LAVATORY LOW POINT (ROOF) MECHANICAL MECHANICAL-ELECTRICAL-PLUMBING MEZZANINE MANUFACTURER MINIMUM MIRROR METAL OVER ON CENTER **OPPOSITE HAND** PERFORATED PERIMETER PLYWOOD PAINTED QUANTITY ROOF DRAIN REFER REINFORCED REQUIRED ROUGH OPENING SQUARE FEET SHEATHING SIMILAR SQUARE STEEL STORAGE STRUCTURAL TONGUE AND GROOVE TOP OF TEMPERED TYPICAL THERMOPLASTIC POLYOLEFIN MEMBRANE UNLESS NOTED OTHERWISE VERTICAL WITH

DRAWING SYMBOLS

INCH

IN

IOTICE: DUTY OF COOPERATIO

LURE TO NOTIFY THE ARCHITEC

DO NOT SCALE FROM DRAWING. VERIFY ALL DIMENSIONS ON SITE.

WOOD

VINYL

VL

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

MAIKER BOYERS PROJECT INFORMATION & SHEET INDEX

LEGEND

	SITE 7295 WASHINGTON STREET
	EDUCATION 1. WELBY COMMUNITY SCHOOL - 1 MILE 2. MAPLETON PUBLIC SCHOOLS - 1.4 MILES 3. GLOBAL LEADERSHIP ACADEMY - 1.6 MILES 4. CORONADO HILLS ELEMENTARY SCHOOL - 2
	RECREATION MILES 5. WELBY LEARNING PARK - 1 MILE 6. SANDHOFER OPEN SPACE - 1 MILE 7. ROTELLA PARK - 1.6 MILES 8. CITY VIEW PARK - 1.8 MILES
	 AMENITIES 9. STEELE STREET PARK - 2.2 MILES 10. MR. EGG1 MILE 11. FARM TO TRUCK COLORADO2 MILES 12. PHO 154 MILES 13. RICCO'S BURRITOS8 MILES 14. CROSSFIT EMINENCE8 MILES 15. JAY'S GRILLE & BAR8 MILES
[]]	MULTIMODAL PATHS
	 ETAI'S BAKERY CAFE8 MILES NIVER CREEK TRAIL COLORADO FRONT RANGE TRAIL FERNALD TRAIL CLEAR CREEK TRAIL
	21. S PLATTE RIVER TRAIL
+	OFF MAP

22. 72nd AVE STATION - 3.4 MILES

24. KING SOOPERS - 5.4 MILES

23. WALMART - 2 MILES

CONTEMPLATES FURTHER COOPERATION AMONG THE OWNER, HIS CONTRACTOR, AND THE ARCHITECT. DESIGN AND CTION ARE COMPLEX. ALTHOUGH THE ARCHITECT AND HIS CONSULTANTS HAVE PERFORMED THEIR SERVICES WITH DUE CARE AND E, THEY CANNOT GUARANTEE PERFECTION. COMMUNICATION IS IMPERFECT AND EVERY CONTINGENCY CANNOT BE ANTICIPATED. ANY ONS, OR DISCREPANCY DISCOVERED BY THE USE OF THESE DOCUMENTS SHALL BE REPORTED IMMEDIATELY TO THE ARCHITECT. IFY THE ARCHITECT COMPOLINDS MISUNDERSTANDING AND INCREASES CONSTRUCTION COSTS. A FAILURE TO COOPERATE BY SIMPLE DTICE TO THE ARCHITECT SHALL RELIEVE THE ARCHITECT FROM RESPONSIBILITY FOR ALL CONSEQUENCES ARRIVING OUT OF SUCH CHANGES. THE DESIGNS AND PLANS ARE COPYRIGHT AND ARE NOT TO BE USED OR REPRODUCED WHOLLY OR IN PART WITHOUT THE WRITTEN PERMISSION OF SSARCHITECTS. THE DRAWINGS AND SPECIFICATIONS ARE INSTRUMENTS OF SERVICE AND SHALL REMAIN THE PROPERTY OF THE ARCHITECT WHETHER THE PROJECT FOR WHICH THEY ARE MADE IS EXECUTED OR NOT. COPYRIGHT SSARCHITECTS.

MAIKER BOYERS

7295 WASHINGTON ST., ADAMS COUNTY, CO 80229

CONSULTANT

PROJECT DESCRIPTION

A 5-STORY MIXED-USE DEVELOPMENT CONTAINING GROUND LEVEL COMMERCIAL SPACE INCLUDING SPACE FOR A FUTURE BOYERS COFFEE SHOP, RESIDENTIAL LOBBY, AND COVERED PARKING, WITH PERMANENTLY AFFORDABLE HOUSING ON THE UPPER FLOORS. THE AFFORDABLE HOUSING WILL CONSIST OF APPROXIMATELY 117 PERMANENTLY AFFORDABLE 1 & 2 BEDROOM FOR RENT APARTMENT UNITS. RESIDENTIAL AMENITIES WILL INCLUDE TWO ELEVATED COURTYARDS, A FITNESS ROOM AND ROOF TOP AMENITY DECK.

PROJECT INTENT

MAIKER HOUSING PARTNERS PROPOSES TO REZONE THE SITE TO PUD ZONING AND DEVELOP THE SITE INTO A MIXED-USE DEVELOPMENT CONTAINING GROUND LEVEL COMMERCIAL SPACE FOR A FUTURE BOYERS COFFEE SHOP WITH PERMANENTLY AFFORDABLE HOUSING ON THE UPPER FLOORS. THE PROJECT WILL BE A NEW COMMUNITY HUB AND GATEWAY FOR THE WELBY NEIGHBORHOOD OF ADAMS COUNTY, IN SUPPORT OF THE GOALS AND VISION ESTABLISHED IN THE WELBY SUBAREA PLAN. THE PROJECT WILL CELEBRATE THE HISTORY OF THE SITE BY INCORPORATING HISTORIC ELEMENTS OF THE 1927 SCHOOLHOUSE AND CONTINUE THE RICH TRADITION OF THE BOYERS COFFEE SHOP AS A COMMUNITY HUB AND MEETING PLACE.

THE PURPOSE AND OBJECTIVE OF A PLANNED UNIT DEVELOPMENT (P.U.D.) IS TO ENCOURAGE THE DEVELOPMENT OF LAND AS A SINGLE UNIT. A P.U.D. ALLOWS GREATER FLEXIBILITY IN THE DESIGN OF A DEVELOPMENT, MORE VARIETY AND DIVERSIFICATION IN THE RELATIONSHIPS BETWEEN BUILDINGS, OPEN SPACES AND USES, AND CONSERVATION AND RETENTION OF HISTORICAL AND NATURAL TOPOGRAPHIC FEATURES WHILE MEETING THE GOALS, POLICIES AND OBJECTIVES OF THE COMPREHENSIVE PLAN.

PROJECT CHARACTER – GENERAL

THE NEW PROPOSAL WILL CREATE A VIBRANT, PERMANENTLY AFFORDABLE RESIDENTIAL OPTION FOR ADAMS COUNTY RESIDENTS. THE SITE'S VICINITY TO DOWNTOWN DENVER AND PROXIMITY TO MASS TRANSIT OPTIONS AND THE CLEAR CREEK TRAILWAY MAKE IT A PERFECT OPPORTUNITY TO BEGIN TO IMPLEMENT THE STRATEGIES IDENTIFIED IN THE WELBY SUBAREA PLAN. WHEN IMPLEMENTED IN 2014, THE STATED GOAL OF THE DOCUMENT WAS TO BUILD ON AND TRANSFORM THE EXISTING ASSETS, REINVEST, AND MAINTAIN A VIBRANT COMMUNITY THAT ATTRACTS INVESTMENTS FROM BOTH INSIDE AND OUTSIDE WELBY. THE NEW WELBY PROPOSAL UNDER REVIEW WILL NOT ONLY RE-ESTABLISH A WELL-LOVED COMMUNITY ASSET IN THE BOYERS COFFEE SHOP, BUT IT WILL ALSO HELP MEET ADAMS 'S COUNTY'S AFFORDABLE HOUSING GOALS, A RESIDENTIAL BUILDING MANAGED AND DELIVERED VIA MAIKER HOUSING PARTNERS.

SHEET INDEX

01-GENERAL		
A 0.00	COVER SHEET	
A 0.01	PROJECT INFORMATION & SHEET INDEX	
02-CIVIL		
C0.01	CIVIL COVER SHEET	
C0.02	GENERAL NOTES	
C0.03	GENERAL NOTES	
C1.00	EXISTING CONDITIONS AND DEMO PLAN	
C1.01	SITE PLAN	
C1.02	UTILITY PLAN	
C2.00	EROSION AND SEDIMENT CONTROL PLAN - INITIAL	
C2.01	EROSION AND SEDIMENT CONTROL PLAN - INTERIM	
C2.02	EROSION AND SEDIMENT CONTROL PLAN - FINAL	
C2.03	EROSION AND SEDIMENT CONTROL DETAILS	
C2.04	EROSION AND SEDIMENT CONTROL DETAILS	
C2.05	EROSION AND SEDIMENT CONTROL DETAILS	
03-LANDSCAPE		
L1.00	LANDSCAPE COVER SHEET & PLANT LIST	
L2.00	LANDSCAPE PLAN	
05-ARCHI	TECTURAL	
A 1.00	SITE PLAN	
A 1.10	GROUND AND SECOND LEVEL PLANS	
A 1.20	THIRD AND FOURTH LEVEL PLAN	
A 1.30	FIFTH LEVEL & ROOF PLAN	
A 2.00	ELEVATIONS	
A 2.01	ELEVATIONS	
A 2.10	CONCEPTUAL 3-D VIEWS	
A 2.11	CONCEPTUAL 3-D VIEWS	
11 - ELECTRICAL		
E 1.10	SITE PHOTOMETRIC PLAN	
E 1.20	LEVELS 2 & 5 PHOTOMETRIC PLANS	
E 2.10	LIGHTING CUTSHEETS	
E 2.20	LIGHTING CUTSHEETS	
E 2.30	LIGHTING CUTSHEETS	

GENERAL NOTES

- DO NOT SCALE DRAWINGS. VERIFY ALL DIMENSIONS AND CONDITIONS. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE ARCHITECT.
- THIS PROJECT SHALL COMPLY WITH ALL GOVERNING REGULATIONS, ORDINANCES, OR COVENANTS OF THE AREA IN WHICH IT IS BUILT.
- 3. CONTRACTOR TO VERIFY CODE REQUIREMENTS FOR STAIR HANDRAILS AND GUARDS AND REPORT ANY DISCREPANCIES TO THE ARCHITECT.
- CONTRACTOR TO VERIFY CONFORMANCE TO CODE REQUIREMENTS FOR LOCATIONS OF TEMPERED 4 GLASS. TEMPERED GLASS TO BE LOCATED AT THE FOLLOWING AREAS: WITHIN A 24" ARC OF DOORS (OPEN OR CLOSED) OR OTHER AREAS SUBJECT TO HUMAN IMPACT. - USED IN DOORS. - SHOWER LOCATIONS.
- PROVED FIRESTOPS AT CONCEALED VERTICAL AND HORIZONTAL SPACES AND ALL FLUES & OPENINGS AT THE TOP OF WALLS.
- 6. PROVIDE FIRE-RATED PENETRATION PROTECTIVES AT ASSEMBLIES WITH REQUIRED FIRE RATING.
- ALL EXTERIOR DOORS AND DOORS LEADING TO UNHEATED AREAS TO BE WEATHERSTRIPPED
- INSULATION: PER BUILDING ASSEMBLIES
- ALL EXPOSED ROOF VENTS AND STACKS ARE TO BE PAINTED TO MATCH THE ADJACENT ROOF MATERIAL
- 10. CONTRACTOR TO OBSERVE MANUFACTURER'S INSTRUCTIONS AND PROCEDURES FOR INSTALLATION OF ALL MATERIAL & EQUIPMENT
- 11. PROVIDE MOISTURE RESISTANT GYP. BD. AT ALL WET WALLS. PROVIDE TILE BACKER BOARD AT SHOWER STALL WHERE WALLS ARE TO BE FINISHED WITH NON-ABSORBENT SURFACE TO MIN. HEIGHT OF 70" ABOVE DRAIN INLET

PDP &	REZONING	SUBMITTA

02.07.2025

PROJECT INFORMATION & SHEET INDEX

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

MAIKER BOYERS PRELIMINARY DEVELOPMENT PLAN

LOCATED AT: 7295 WASHINGTON ST., ADAMS COUNTY, CO 80229 LOT 1, AMENDED BOYER COFFEE SUBDIVISION (7295 WASHINGTON ST, DENVER, CO) LOCATED IN THE SE QUARTER OF SECTION 34, TOWNSHIP 2 SOUTH, RANGE 68 WEST OF THE 6TH PRINCIPAL MERIDIAN CITY OF DENVER, COUNTY OF ADAMS, STATE OF COLORADO

VICINITY MAP SCALE 1" = 1,000'

No. Date

SHEET LIST TABLE		
SHEET NUMBER	SHEET TITLE	
C0.01	COVER SHEET	
C0.02	GENERAL NOTES	
C0.03	GENERAL NOTES	
C1.00	EXISTING CONDITIONS	
	AND DEMO PLAN	
C1.01	SITE PLAN	
C1.02	UTILITY PLAN	
C2.00	EROSION AND SEDIMENT	
	CONTROL PLAN - INITIAL	
C2.01	EROSION AND SEDIMENT	
	CONTROL PLAN - INTERIM	
C2.02	EROSION AND SEDIMENT	
	CONTROL PLAN - FINAL	
C2.03	EROSION AND SEDIMENT	
	CONTROL DETAILS	
C2.04	EROSION AND SEDIMENT	
	CONTROL DETAILS	
C2.05	EROSION AND SEDIMENT	
	CONTROL DETAILS	

BENCHMARK: (NAVD83 DATUM)

ORIGINATING BENCHMARK:

SET MAG NAIL IN ASPHALT AS SHOWN ON SHEET 2. USED OPUS PROCESSING FOR COORDINATE AND ELEVATION RESULT ON MARCH 9, 2023, HAVING USED 13,340 OF 14,196 OBSERVATIONS (94%) AND 68 OF 71 FIXED AMBIGUITIES (96%). (LIES APPROXIMATELY 9.2' NORTH OF WESTERLY MOST CORNER OF CONCRETE FOUNDATION.)

ELEVATION = 5149.69'

BASIS OF BEARINGS:

BEARINGS ARE BASED ON THE EAST LINE OF THE SOUTHEAST QUARTER OF THE SOUTHEAST QUARTER OF SECTION 34, TOWNSHIP 2 SOUTH, RANGE 68 WEST OF THE 6TH P.M. HAVING AN ASSUMED BEARING OF NORTH 00°04'31" WEST, SAID LINE BEING MONUMENTED AT EACH END BY A FOUND REBAR WITH 3-1/4" ALUMINUM CAP (STAMPING ILLEGIBLE) IN A RANGE BOX.

PDP & REZONING SUBMITTAL

COVER SHEET

GENERAL CONSTRUCTION AND SURVEY NOTES

- LOCAL JURISDICTIONAL REQUIREMENTS SHALL OVERRIDE THE SPECIFICATIONS ON THESE GENERAL NOTES PAGES IF APPLICABLE.
- 2. CONTRACTOR AGREES THAT THEY SHALL ASSUME SOLE AND COMPLETE RESPONSIBILITY FOR JOB SITE CONDITIONS DURING THE CONSTRUCTION OF THE PROJECT. INCLUDING SAFETY OF ALL PERSONS AND PROPERTY; THAT THIS REQUIREMENT SHALL APPLY CONTINUOUSLY AND NOT BE LIMITED TO NORMAL WORKING HOURS; AND THAT THE CONTRACTOR SHALL DEFEND, INDEMNIFY AND HOLD THE OWNER AND THE ENGINEER HARMLESS FROM ANY AND ALL LIABILITY, REAL OR ALLEGED, IN CONNECTION WITH THE PERFORMANCE OF THE WORK ON THIS PROJECT, EXCEPTING FROM LIABILITY ARISING FROM SOLE NEGLIGENCE OF THE OWNER OR ENGINEER
- ANY DISCREPANCY OR CONFLICT WITHIN THE DRAWINGS AND SPECIFICATIONS SHALL BE 3. BROUGHT TO THE ATTENTION OF THE ENGINEER. DISCREPANCIES OR CONFLICTS NOT BROUGHT TO THE ENGINEER'S ATTENTION AND CLARIFIED DURING BIDDING OF THE PROJECT WILL BE DEEMED TO HAVE BEEN BID OR PROPOSED IN THE MORE COSTLY MANNER, AND THE BETTER QUALITY OR GREATER QUANTITY OF THE WORK SHALL BE PROVIDED BY THE CONTRACTOR IN ACCORDANCE WITH ENGINEER'S INTERPRETATION.
- LOCATIONS, ELEVATIONS, AND DIMENSION OF EXISTING UTILITIES, STRUCTURES AND OTHER FEATURES ARE SHOWN ACCORDING TO THE BEST INFORMATION AVAILABLE AT THE TIME THESE DRAWINGS WERE PREPARED, BUT DO NOT PURPORT TO BE ABSOLUTELY CORRECT THE INDICATED LOCATION OF UNDERGROUND UTILITIES, STRUCTURES, AND FACILITIES IS APPROXIMATE AND REFLECTS THE BEST INFORMATION AVAILABLE FROM SURVEYS AND RECORDS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR DETERMINING THE EXACT SIZE, LOCATION, DEPTH, HEIGHT, ELEVATION, DIMENSION, AND EXTENT OF ALL UNDERGROUND AND OVERHEAD FACILITIES AND OTHER FEATURES AFFECTING THEIR WORK PRIOR TO PROCEEDING WITH ANY CONSTRUCTION ACTIVITY THAT MAY AFFECT SUCH FACILITIES. THE CONTRACTOR SHALL BE RESPONSIBLE FOR DAMAGE CAUSED BY FAILURE TO COMPLY WITH THESE INSTRUCTIONS.
- THE CONTRACTOR SHALL NOTIFY THE ENGINEER AND ALL RESPECTIVE GOVERNMENTAL OR 5. UTILITY AGENCIES AFFECTED BY CONSTRUCTION 72 HOURS PRIOR TO STARTING CONSTRUCTION. ANY TIE-IN SHALL BE COORDINATED BY THE CONTRACTOR WITH THE PUBLIC WORKS DEPARTMENT, AT LEAST 48 HOURS IN ADVANCE.
- THE CONTRACTOR'S SURVEYOR SHALL OBTAIN AN AUTOCAD FILE FROM ENGINEER AND VERIFY ALL HORIZONTAL DIMENSIONING PRIOR TO CONSTRUCTION STAKING. SURVEYOR MUST VERIFY ALL BENCHMARKS, BASIS OF BEARING AND DATUM INFORMATION TO ENSURE IMPROVEMENTS WILL BE AT THE SAME HORIZONTAL AND VERTICAL LOCATIONS SHOWN ON THE DESIGN CONSTRUCTION DRAWINGS. PRIOR TO CONSTRUCTION STAKING ANY DISCREPANCY MUST BE REPORTED TO THE OWNER AND ENGINEER PRIOR TO CONTINUATION OF ANY FURTHER STAKING OR CONSTRUCTION WORK. ALL BENCHMARKS OR MONUMENTS THAT NEED TO BE RELOCATED SHALL BE DONE SO BY A LICENSED SURVEYOR.
- 7. IT IS THE CONTRACTOR'S RESPONSIBILITY TO NOTIFY THE OWNER/DEVELOPER AND ENGINEER OF ANY PROBLEM CONFORMING TO THE APPROVED PLANS FOR ANY ELEMENT OF THE PROPOSED IMPROVEMENTS PRIOR TO CONSTRUCTION.
- THE CONTRACTOR MUST HAVE THE APPROVED CONSTRUCTION DRAWINGS IN THEIR POSSESSION PRIOR TO THE START OF CONSTRUCTION. AT LEAST ONE (1) COPY OF THE APPROVED PLANS. WITH REVISIONS. MUST BE KEPT ON-SITE AT ALL TIMES.
- THE LIMITS OF CONSTRUCTION SHALL REMAIN WITHIN THE PROPERTY LINE UNLESS SPECIFIC AUTHORIZATION HAS BEEN GRANTED BY ADJACENT PROPERTY OR RIGHT OF WAY OWNER.
- 10. CONTRACTOR SHALL MAINTAIN A CLEAN AND ORDERLY JOB SITE AT ALL TIMES. 11. ALL STATIONS AND OFFSETS REFER TO THE CONSTRUCTION REFERENCE LINE, WHICH SHALL
- BE THE CENTERLINE OF THE ROADWAY, UNLESS OTHERWISE NOTED. 12. ATTENTION IS DIRECTED TO THE FACT THAT THESE PLANS MAY HAVE BEEN ALTERED IN SIZE
- BY REPRODUCTION. THIS MUST BE CONSIDERED WHEN OBTAINING SCALED DATA.
- 13. THE CONSTRUCTION LENGTHS INDICATED IN THESE PLANS ARE APPROXIMATE. ACTUAL LIMITS MAY BE SET IN THE FIELD AS DIRECTED BY THE ENGINEER.
- 14. THE CONTRACTOR SHALL OBTAIN, AT THEIR OWN EXPENSE, ALL APPLICABLE CODES, LICENSES, STANDARDS, SPECIFICATIONS, PERMITS, BONDS, ETC. WHICH ARE NECESSARY TO PERFORM THE PROPOSED WORK.
- 15. THE CONTRACTOR SHALL HAVE A FOREMAN, OR RESPONSIBLE PARTY ON SITE AT ALL TIMES WHEN WORK IS BEING PERFORMED. ALL WORKERS ON THE JOB SITE WILL BE COURTEOUS TO THE PUBLIC AT ALL TIMES AND SHALL REFER ANY QUESTIONS OR CONCERNS TO THE CONTRACTOR'S FOREMAN OR MUNICIPALITY INSPECTOR.
- 16. THE CONTRACTOR SHALL MAINTAIN DETAILED "RECORD" DRAWINGS THROUGH THE COURSE OF CONSTRUCTION THAT DETAIL ALL FIELD ADJUSTMENTS IN THE EVENT SURVEYED AS-BUILT INFORMATION CANNOT BE OBTAINED PRIOR TO UTILITY BURIAL, RECORD DRAWINGS SHALL BE SUBMITTED TO THE ENGINEER ALONG WITH SURVEYED AS-BUILT DRAWINGS FOR APPROVAL PRIOR TO FINAL ACCEPTANCE OF THE WORK BY THE OWNER.
- 17. "AS-BUILT" DRAWINGS ARE TO BE PREPARED BY A LICENSED SURVEYOR PER JURISDICTIONAL PERMIT REQUIREMENTS AND SUBMITTED TO THE ENGINEER FOR APPROVAL PRIOR TO FINAL ACCEPTANCE OF THE WORK BY OWNER. AS-BUILT DRAWINGS MUST DEPICT THE SIZE. TYPE OF MATERIAL, AND HORIZONTAL AND VERTICAL LOCATION OF ALL UTILITY, STORMWATER RELATED SITE IMPROVEMENTS. THIS INCLUDES BUT IS NOT LIMITED TO STORMWATER PIPES (INVERTS MUST BE SHOWN), INLETS, CURBS, SWALES, BERMS AND GRADE CHANCES IN PAVED AREAS. IN PARKING AND RETENTION AREAS THE AS-BUILT DRAWINGS MUST INCLUDE TOP-OF-BANK, TOE-OF-SLOPE, GRADE BREAKS, AND BOTTOM ELEVATIONS. PAVED, CONCRETE, AND LANDSCAPED AREAS MUST BE CLEARLY DEFINED. IT SHALL BE THE CONTRACTOR'S SOLE RESPONSIBILITY TO PROVIDE AS-BUILTS THAT MEET ALL OWNER, GOVERNMENTAL AGENCIES, AND ENGINEER OF RECORD'S REQUIREMENTS. AS-BUILTS MUST BE PERFORMED AND SIGNED AND SEALED BY A STATE LICENSED LAND SURVEYOR.
- 18. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL QUALITY CONTROL MEASURES AND TESTING TO ENSURE THE WORK CONFORMS TO THE SPECIFICATIONS AND DRAWINGS. THE CONTRACTOR IS RESPONSIBLE FOR ARRANGING ALL NECESSARY INSPECTIONS. ANY WORK FOUND TO BE DEFECTIVE OR NOT IN COMPLIANCE SHALL BE CORRECTED BY THE ENGINEER AT THEIR OWN EXPENSE.
- 19. CONSTRUCTION EASEMENTS, RIGHT-OF-WAY, AND OTHER CRITICAL EASEMENTS SHALL BE DELINEATED WITH TEMPORARY STAKING BY THE CONTRACTOR.
- 20. REFER TO FINAL RECORDED PLAT FOR LOT, TRACT, PARCEL, AND EASEMENT LOCATIONS AND DESIGNATIONS.
- 21. ALL RETAINING WALLS OVER 4' IN HEIGHT REQUIRE A BUILDING PERMIT. (MEASURED FROM BOTTOM OF FOOTER TO TOP OF WALL)
- 22. THE INFORMATION PROVIDED ON THESE PLANS DEPICT ONLY THE TOP OF WALL ELEVATION AND THE BOTTOM OF WALL ELEVATION WHERE THE FACE OF THE WALL MEETS THE FINISHED GRADE. DEPTH OF FOOTINGS OR ANY OTHER REQUIRED STRUCTURAL ELEMENTS ARE NOT INCLUDED. RETAINING WALLS SHALL BE DESIGNED BY OTHERS.
- 23. THE ENGINEER SHALL NOT HAVE CONTROL OVER OR CHARGE OF AND SHALL NOT BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, OR PROCEDURES OR FOR SAFETY PRECAUTIONS AND PROGRAMS IN CONNECTION WITH THE WORK SHOWN ON THESE PLANS. THE ENGINEER SHALL NOT BE RESPONSIBLE FOR THE CONTRACTOR'S SCHEDULES OR FAILURE TO CARRY OUT THE WORK. THE ENGINEER IS NOT RESPONSIBLE FOR THE ACTS OR OMISSIONS OF THE CONTRACTOR, SUBCONTRACTOR, OR THEIR AGENTS OR EMPLOYEES, OR OF ANY OTHER PERSONS PERFORMING PORTIONS OF THE WORK
- 24. ALL TRENCH EXCAVATIONS SHALL BE PROPERLY SLOPED, SHORED, OR OTHERWISE SUPPORTED IN A MANNER REQUIRED BY OSHA AND AS REQUIRED BY STATE OR LOCAL LAWS.
- 25. IF CONFLICTING INFORMATION IS NOTED WITHIN THESE PLANS, THE CONTRACTOR IS TO IMMEDIATELY CONTACT THE ENGINEER FOR CLARIFICATION.

NOTICE: DUTY OF COOPERATION RELEASE OF THESE DOCUMENTS CONTEMPLATES FURTHER COOPERATION AMONG THE OWNER, HIS CONTRACTOR, AND THE ARCHITECT. DESIGN AND ONSTRUCTION ARE COMPLEX. ALTHOUGH THE ARCHITECT AND HIS CONSULTANTS HAVE PERFORMED THEIR SERVICES WITH DUE CARE AND ILIGENCE, THEY CANNOT GUARANTEE PERFECTION. COMMUNICATION IS IMPERFECT AND EVERY CONTINGENCY CANNOT BE ANTICIPATED. ANY RRORS, OMISSIONS, OR DISCREPANCY DISCOVERED BY THE USE OF THESE DOCUMENTS SHALL BE REPORTED IMMEDIATELY TO THE ARCHITECT. AILURE TO NOTIFY THE ARCHITECT COMPOUNDS MISUNDERSTANDING AND INCREASES CONSTRUCTION COSTS. A FAILURE TO COOPERATE BY SIMPLE NOTICE TO THE ARCHITECT SHALL RELIEVE THE ARCHITECT FROM RESPONSIBILITY FOR ALL CONSEQUENCES ARRIVING OUT OF SUCH CHANGES. THE DESIGNS AND PLANS ARE COPYRIGHT AND ARE NOT TO BE USED OR REPRODUCED WHOLLY OR IN PART WITHOUT THE WRITTEN PERMISSION OF SSARCHITECTS. THE DRAWINGS AND SPECIFICATIONS ARE INSTRUMENTS OF SERVICE AND SHALL REMAIN THE PROPERTY OF THE ARCHITECT WHETHER THE PROJECT FOR WHICH THEY ARE MADE IS EXECUTED OR NOT. COPYRIGHT SSARCHITECTS. DO NOT SCALE FROM DRAWING. VERIFY ALL DIMENSIONS ON SITE.

EROSION AND SEDIMENT CONTROL NOTES

- STEEPER.

- SPILLS AND LEAKS.

- WATERS OF THE STATE.

- AMOUNTS.

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

LOCAL JURISDICTIONAL REQUIREMENTS SHALL OVERRIDE THE SPECIFICATIONS ON THESE GENERAL NOTES PAGES. IF APPLICABLE.

THE STORMWATER POLLUTION PREVENTION PLAN (SWPPP) IS COMPRISED OF THE EROSION PLANS AND STANDARD DETAILS IN THIS PLAN SET PLUS THE PERMIT AND ALL SUBSEQUENT REPORTS AND RELATED DOCUMENTS. ALL STORMWATER POLLUTION PREVENTION MEASURES PRESENTED IN THESE DRAWINGS, AND/OR IN THE STORMWATER POLLUTION PREVENTION PLAN, SHALL BE INITIATED AS SOON AS PRACTICABLE.

ALL CONTRACTORS AND SUBCONTRACTORS INVOLVED WITH STORMWATER POLLUTION PREVENTION SHALL OBTAIN A COPY OF THE STORMWATER POLLUTION PREVENTION PLAN AND THE STATE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM GENERIC PERMIT (NPDES PERMIT) AND BECOME FAMILIAR WITH THEIR CONTENTS.

THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE SITE CONDITIONS DURING CONSTRUCTION UNTIL THE PROJECT IS ACCEPTED.

THE CONTRACTOR SHALL IMPLEMENT BEST MANAGEMENT PRACTICES (BMP'S) AS REQUIRED BY THE SWPPP. ADDITIONAL BEST MANAGEMENT PRACTICES SHALL BE IMPLEMENTED AS DICTATED BY CONDITIONS AT NO ADDITIONAL COST TO THE OWNER THROUGHOUT ALL PHASES OF CONSTRUCTION.

BEST MANAGEMENT PRACTICES AND CONTROLS SHALL CONFORM TO FEDERAL, STATE, OR LOCAL REQUIREMENTS OR MANUAL OF PRACTICE, AS APPLICABLE. THE CONTRACTOR SHALL IMPLEMENT ADDITIONAL CONTROLS AS DIRECTED BY THE PERMITTING AGENCY OR OWNER.

PERMITS FOR ANY CONSTRUCTION ACTIVITY IMPACTING STATE WATERS OR REGULATED WETLANDS SHALL ALWAYS BE RETAINED ON SITE.

THE CONTRACTOR SHALL LIMIT CLEARING TO THE MINIMUM EXTENT PRACTICAL OR AS REQUIRED BY THE GENERAL PERMIT.

CONTRACTOR TO LIMIT DISTURBANCE OF SITE IN STRICT ACCORDANCE WITH EROSION CONTROL SEQUENCING SHOWN ON THESE PLANS. NO UNNECESSARY OR IMPROPERLY SEQUENCED CLEARING AND/OR GRADING SHALL BE PERMITTED

10. CONTRACTOR SHALL APPLY EROSION CONTROL BLANKETS TO ALL SLOPES 3:1 (H:V) OR

11. THE GENERAL CONTRACTOR SHALL DENOTE ON PLAN THE TEMPORARY PARKING AND STORAGE AREA WHICH SHALL ALSO BE USED AS THE EQUIPMENT MAINTENANCE AND CLEANING AREA, EMPLOYEE PARKING AREA, AND AREA FOR LOCATING PORTABLE FACILITIES, OFFICE TRAILERS, AND TOILET FACILITIES.

12. ALL WASH WATER (CONCRETE TRUCKS, VEHICLE CLEANING, EQUIPMENT CLEANING, ETC.) SHALL BE DETAINED AND PROPERLY TREATED OR DISPOSED.

13. SUFFICIENT OIL AND GREASE ABSORBING MATERIALS AND FLOTATION BOOMS SHALL BE MAINTAINED ON SITE OR READILY AVAILABLE TO CONTAIN AND CLEAN-UP FUEL OR CHEMICAL

14. DUST ON THE SITE SHALL BE CONTROLLED. THE USE OF MOTOR OILS AND OTHER PETROLEUM BASED OR TOXIC LIQUIDS FOR DUST SUPPRESSION OPERATION IS PROHIBITED.

15. RUBBISH, TRASH, GARBAGE, LITTER, OR OTHER SUCH MATERIALS SHALL BE DEPOSITED INTO SEALED CONTAINERS. MATERIALS SHALL BE PREVENTED FROM LEAVING THE PREMISES THROUGH THE ACTION OF WIND OR STORMWATER DISCHARGE INTO DRAINAGE DITCHES OR

16. ALL DENUDED AREAS THAT WILL BE INACTIVE FOR 14 DAYS OR MORE, MUST BE STABILIZED TEMPORARILY WITH THE USE OF FAST-GERMINATING ANNUAL GRASS/GRAN VARIETIES. STRAW/HAY, MULCH, WOOD CELLULOSE FIBERS, TACKIFIERS, NETTING OR BLANKETS AS SHOWN ON THESE DRAWINGS.

17. DISTURBED PORTIONS OF THE SITE WHERE CONSTRUCTION ACTIVITY HAS PERMANENTLY STOPPED SHALL BE PERMANENTLY STABILIZED AS SHOWN ON THE PLANS. THESE AREAS SHALL BE SEEDED, SODDED AND/OR VEGETATED NO LATER THAN 14 DAYS AFTER THE LAST CONSTRUCTION ACTIVITY OCCURRING IN THESE AREAS. REFER TO THE GRADING PLAN AND/OR LANDSCAPE PLAN.

18. IF THE ACTION OF VEHICLES TRAVELING OVER THE GRAVEL CONSTRUCTION ENTRANCES IS NOT SUFFICIENT TO REMOVE THE MAJORITY OF DIRT OR MUD. THEN THE TIRES MUST BE WASHED BEFORE THE VEHICLES ENTER A PUBLIC ROAD. IF WASHING IS USED, PROVISIONS MUST BE MADE TO INTERCEPT THE WASH WATER AND TRAP THE SEDIMENT BEFORE IT IS CARRIED OFF THE SITE, ONLY USE INGRESS/EGRESS LOCATIONS AS PROVIDED.

ALL MATERIALS SPILLED, DROPPED, WASHED, OR TRACKED FROM VEHICLES ONTO ROADWAYS OR INTO STORM DRAINS MUST BE REMOVED IMMEDIATELY.

20. CONTRACTORS OR SUBCONTRACTORS WILL BE RESPONSIBLE FOR REMOVING SEDIMENT IN THE DETENTION POND AND ANY SEDIMENT THAT MAY HAVE COLLECTED IN THE STORM SEWER DRAINAGE SYSTEMS IN CONJUNCTION WITH THE STABILIZATION OF THE SITE. CONTRACTOR SHALL ALSO REMOVE ALL SILT/SEDIMENT/DEBRIS PRIOR TO CERTIFICATION.

21. ON-SITE & OFF-SITE SOIL STOCKPILE AND BORROW AREAS SHALL BE PROTECTED FROM EROSION AND SEDIMENTATION THROUGH IMPLEMENTATION OF BEST MANAGEMENT PRACTICES. STOCKPILE AND BORROW AREA LOCATIONS SHALL BE NOTED ON THE SITE MAP AND PERMITTED IN ACCORDANCE WITH GENERAL PERMIT REQUIREMENTS.

22. SLOPES SHALL BE LEFT IN A ROUGHENED CONDITION DURING THE GRADING PHASE TO REDUCE RUNOFF VELOCITIES AND EROSION.

23. DUE TO THE GRADE CHANGES DURING DEVELOPMENT OF THE PROJECT. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ADJUSTING THE EROSION AND SEDIMENT CONTROL MEASURES (SILT FENCES, ETC.) TO PREVENT EROSION AND POLLUTANT DISCHARGE

24. SEE SITE PLAN FOR PERMANENT AND TEMPORARY SIGNAGE

25. THE GENERAL CONTRACTOR IS TO DESIGNATE/IDENTIFY AREAS ON THESE DRAWINGS, INSIDE THE LIMITS OF DISTURBANCE FOR WASTE DISPOSAL AND DELIVERY OF MATERIAL STORAGE.

26. THE CONTRACTOR SHALL INSPECT ALL EROSION AND SEDIMENT CONTROL MEASURES ON A WEEKLY BASIS AND FOLLOWING MAJOR STORM EVENTS. REPARATIVE ACTION SHALL BE TAKEN WITHIN 24 HOURS OF INSPECTION. EROSION CONTROL INSPECTORS SHALL KEEP A RECORD OF ALL INSPECTIONS AND MAINTENANCE ACTIVITIES INCLUDING DATES OF INSPECTIONS, NAMES OF INSPECTORS, OBSERVATIONS, ACTIONS TAKEN, AND RAINFALL

SEDIMENT SHALL BE REMOVED FROM BMP MEASURES ONCE SEDIMENT HAS REACHED ONE-HALF HEIGHT OF THE BARRIER.

28. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING A DEWATERING PLAN TO REGULATORY AGENCIES IF NECESSITATED.

DEMOLITION NOTES

LOCAL JURISDICTIONAL REQUIREMENTS SHALL OVERRIDE THE SPECIFICATIONS ON THESE GENERAL NOTES PAGES. IF APPLICABLE.

- ALL EXISTING ABOVE AND BELOW GROUND STRUCTURES WITHIN THE LIMITS OF 2. CONSTRUCTION SHALL BE DEMOLISHED OR REMOVED UNLESS NOTED OTHERWISE WITHIN THIS CONSTRUCTION SET AND/OR PROJECT SPECIFICATIONS. ALL PAVEMENT, BASE COURSES, SIDEWALKS, CURBS, BUILDINGS, FOUNDATIONS, ETC., WITHIN THE AREA TO BE DEMOLISHED SHALL BE REMOVED TO FULL DEPTH. THIS INCLUDES FOUNDATION SLABS, WALLS, AND FOOTINGS. CAVITIES LEFT BY STRUCTURE REMOVAL SHALL BE BACKFILLED WITH SATISFACTORY MATERIALS AND COMPACTED PER THE PROJECT SPECIFICATIONS, AS DETERMINED BY THE ONSITE GEOTECHNICAL ENGINEER.
- ITEMS SHOWN TO BE RELOCATED SHALL BE CAREFULLY REMOVED AND STORED BY THE 3. CONTRACTOR UNTIL SUCH TIME AS THEY CAN BE PLACED IN THEIR NEW LOCATION. CONTRACTOR SHALL VERIFY THESE ITEMS WITH THE OWNER PRIOR TO CONSTRUCTION.
- IF ELEMENTS ARE DISCOVERED THAT ARE NOT DEPICTED IN THIS SET OF PLANS OR 4. SUPPORTING REPORTS, THEY SHALL BE IMMEDIATELY BROUGHT TO THE ATTENTION OF THE OWNER AND ENGINEER
- CLEARING LIMITS SHALL BE PHYSICALLY MARKED IN THE FIELD.
- ALL DEMOLITION WASTE AND CONSTRUCTION DEBRIS SHALL BECOME THE PROPERTY OF THE 6 CONTRACTOR UNLESS OTHERWISE DESIGNATED AND SHALL BE REMOVED BY THE CONTRACTOR AND DISPOSED OF OFFSITE IN A STATE APPROVED WASTE SITE AND IN ACCORDANCE WITH ALL LOCAL AND STATE CODES AND PERMIT REQUIREMENTS. TAKE CARE TO PROTECT UTILITIES AND STRUCTURES THAT ARE TO REMAIN. REPAIR DAMAGE ACCORDING TO THE APPROPRIATE UTILITY COMPANY STANDARDS AND AT THE CONTRACTOR'S EXPENSE.
- ALL UTILITY DISCONNECTION. REMOVAL RELOCATION. CUTTING. CAPPING AND /OR ABANDONMENT SHALL BE COORDINATED WITH THE APPROPRIATE UTILITY COMPANY / AGENCY.
- ALL UTILITY AND STRUCTURE REMOVAL. RELOCATION. CUTTING. CAPPING AND/OR ABANDONMENT SHALL BE COORDINATED AND PROPERLY DOCUMENTED BY A CERTIFIED PROFESSIONAL, WHEN APPLICABLE, WITH THE APPROPRIATE UTILITY COMPANY MUNICIPALITY AND/OR AGENCY. DEMOLITION OF REGULATED ITEMS MAY INCLUDE, BUT IS NOT LIMITED TO: WELLS, ASBESTOS, UNDERGROUND STORAGE TANKS, SEPTIC TANKS AND ELECTRIC TRANSFORMERS, DEMOLITION CONTRACTOR SHALL REFER TO ANY ENVIRONMENTAL STUDIES FOR DEMOLITION RECOMMENDATIONS AND GUIDANCE. AVAILABLE ENVIRONMENTAL STUDIES MAY INCLUDE, BUT ARE NOT LIMITED TO: PHASE I ESA, PHASE II, AND ASBESTOS SURVEY. ALL APPLICABLE ENVIRONMENTAL STUDIES SHALL BE MADE AVAILABLE UPON REQUEST.
- EROSION AND SEDIMENTATION CONTROL MEASURES AROUND AREAS OF DEMOLITION SHALL BE PROPERLY INSTALLED AND SHALL FUNCTION PROPERLY PRIOR TO INITIALIZATION OF DEMOLITION ACTIVITIES. ADDITIONALLY, THE CONTRACTOR SHALL USE SUITABLE METHODS TO CONTROL DUST AND DIRT CAUSED BY THE DEMOLITION ACTIVITIES.
- 10. CONTRACTOR SHALL COORDINATE AN ASBESTOS INSPECTION/SURVEY PRIOR TO DEMOLITION OF ANY BUILDING. ASBESTOS OR HAZARDOUS MATERIALS, IF FOUND ON SITE, SHALL BE REMOVED BY A LICENSED HAZARDOUS MATERIALS CONTRACTOR. THE CONTRACTOR SHALL NOTIFY THE OWNER IMMEDIATELY IF HAZARDOUS MATERIALS ARE ENCOUNTERED. THE DEVELOPER AND OR OWNER SHALL PROVIDE THE PHASE I ESA TO THE CONTRACTOR.
- 11. CONTRACTOR SHALL ADHERE TO ALL LOCAL, STATE, FEDERAL AND OSHA REGULATIONS DURING ALL DEMOLITION ACTIVITIES.
- CONTRACTOR SHALL PROTECT ALL EXISTING UTILITIES, STRUCTURES, AND FEATURES TO 12. REMAIN. ANY ITEMS TO REMAIN THAT HAVE BEEN DISTURBED OR DAMAGED AS A RESULT OF CONSTRUCTION SHALL BE REPAIRED OR REPLACED BY THE CONTRACTOR AT THE CONTRACTOR'S EXPENSE. REPAIR TO PRE-CONSTRUCTION CONDITION OR BETTER.
- CONTRACTOR SHALL PROVIDE AND MAINTAIN TRAFFIC CONTROL MEASURES IN ACCORDANCE 13. WITH STATE DEPARTMENT OF TRANSPORTATION REGULATIONS AND AS REQUIRED BY LOCAL AGENCIES WHEN WORKING IN AND/OR ALONG STREETS, ROADS, HIGHWAYS, ETC. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO OBTAIN APPROVAL AND COORDINATE WITH LOCAL AND/OR STATE AGENCIES REGARDING THE NEED, EXTENT AND LIMITATIONS ASSOCIATED WITH INSTALLING AND MAINTAINING TRAFFIC CONTROL MEASURES.
- DAMAGE TO LOOPS OR ANY SIGNAL EQUIPMENT CAUSED BY CONSTRUCTION OF THIS 14. PROJECT MUST BE REPAIRED OR REPLACED TO ORIGINAL OR BETTER CONDITION BY THE CONTRACTOR AT NO COST TO THE OWNER OR MUNICIPALITY.
- 15. ASPHALT/CONCRETE REMOVAL SHALL BE FULL DEPTH TO SUBGRADE PROVIDE NEAT. STRAIGHT, FULL DEPTH, SAW CUTS OF EXISTING PAVEMENT. LANDSCAPE AREAS SHALL BE BACKFILLED PER LANDSCAPE PLANS/GUIDELINES.
- 16. NO TREES SHALL BE REMOVED, NOR VEGETATION DISTURBED BEYOND THE LIMITS OF CONSTRUCTION WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE OWNER'S REPRESENTATIVE
- 17. THE CONTRACTOR WILL BE RESPONSIBLE FOR ENSURING THAT APPROPRIATE MEASURES ARE TAKEN IF PREVIOUSLY UNIDENTIFIED ENVIRONMENTAL IMPACTS ARE DISCOVERED ON THE DEVELOPMENT SITE.
- 18. UPON DISCOVERY OF PREVIOUSLY UNIDENTIFIED CONTAMINATION, THE CONTRACTOR WILL BE RESPONSIBLE FOR ENSURING WORKERS' HEALTH AND SAFETY, IF UNSAFE WORKING CONDITIONS PREVAIL, THE CONTRACTOR WILL BE RESPONSIBLE FOR STOPPING WORK WITHIN SAID AREA IMMEDIATELY. THE CONTRACTOR SHALL MAKE AN ATTEMPT TO DOCUMENT AND ASSESS THE NATURE AND DISPOSITION OF THE IDENTIFIED IMPACT. FOLLOWING THIS INITIAL DOCUMENTATION, THE CONTRACTOR WILL NOTIFY THE ENVIRONMENTAL CONSULTANT OF THE DISCOVERY.
- 19. IF IT IS SAFE TO OPERATE WITHIN THE AFFECTED AREA, THE CONTRACTOR, UNDER THE DIRECTION OF THE ENVIRONMENTAL CONSULTANT, WILL APPLY APPROPRIATE MEASURES TO PRECLUDE EXACERBATION OF THE IDENTIFIED IMPACT.
- 20. UPON NOTIFICATION, THE ENVIRONMENTAL CONSULTANT SHALL CONDUCT A PRELIMINARY INVESTIGATION OF THE AFFECTED AREA(S) AND DETERMINE THE APPROPRIATE COURSE OF ACTION. FURTHERMORE, THE ENVIRONMENTAL CONSULTANT SHALL BE RESPONSIBLE FOR INITIATING THE REQUISITE NOTIFICATION PROCEDURES IN ACCORDANCE WITH THE REQUIREMENTS OF THE DEPARTMENT OF ENVIRONMENTAL PROTECTION.
- WORK WILL RESUME WITHIN THE AFFECTED AREA AT THE DIRECTION OF THE 21. ENVIRONMENTAL CONSULTANT.
- APPROVAL FROM THE PERMIT ISSUING JURISDICTION MUST BE OBTAINED PRIOR TO THE 22. REMOVAL OF NATIVE VEGETATION.
- CONTRACTOR TO COORDINATE WITH LOCAL UTILITY PROVIDERS PRIOR TO ANY MODIFICATION 23. OR ANY INTERRUPTION IN SERVICE.
- 24. ANY DISTURBANCE OR DAMAGE TO EXISTING FEATURES WITHIN RIGHTS-OF-WAYS SHALL BE REPAIRED TO ORIGINAL CONDITION OR BETTER, AND THE RIGHT OF WAY OWNER SHALL BE NOTIFIED IMMEDIATELY
- 25. ANY DESTRUCTION OF PAVEMENT AS A RESULT OF UTILITY CONSTRUCTION SHALL BE REPLACED THE FULL LANE WIDTH PER APPLICABLE CONSTRUCTION STANDARDS.
- 26. IF ANY HISTORICAL OR CULTURAL ARTIFACTS ARE DISCOVERED DURING DEMOLITION. THE CONTRACTOR SHALL IMMEDIATELY CEASE WORK IN THAT AREA AND NOTIFY THE OWNER AND APPROPRIATE AUTHORITIES.
- 27. THE CONTRACTOR SHALL COMPLY WITH LOCAL NOISE ORDINANCES AND RESTRICT LOUD DEMOLITION ACTIVITIES TO THE HOURS SPECIFIED BY LOCAL REGULATIONS OR AS DIRECTED BY THE OWNER
- 28. THE CONTRACTOR SHALL MONITOR AND CONTROL VIBRATIONS FROM DEMOLITION ACTIVITIES TO PREVENT DAMAGE TO ADJACENT STRUCTURES AND UTILITIES.

MAIKER BOYERS

7295 WASHINGTON ST., ADAMS COUNTY, CO 80229

TEMPORARY TRAFFIC CONTROL NOTES

- LOCAL JURISDICTIONAL REQUIREMENTS SHALL OVERRIDE THE SPECIFICATIONS ON THESE GENERAL NOTES PAGES. IF APPLICABLE.
- THE CONTRACTOR SHALL PROVIDE FOR THE SAFE MOVEMENT OF PEDESTRIANS AND 2. VEHICLES THROUGHOUT ALL PHASES OF CONSTRUCTION, INCLUDING DELIVERIES AND DROP-OFFS IN WORK ZONES. THE CONTRACTOR SHALL FURNISH, ERECT AND MAINTAIN ALL NECESSARY TRAFFIC CONTROL AND SAFETY DEVICES, IN ACCORDANCE WITH THE FEDERAL HIGHWAY ADMINISTRATION (FHWA) AND MUTCD STANDARDS AS WELL AS ANY ADDITIONAL REQUIREMENTS IMPOSED BY THE STATE'S DOT.
- ALL TRAFFIC CONTROL MEASURES SHALL PRIORITIZE SAFETY ABOVE ALL ELSE.
- ACCESS TO ALL SIDE STREETS AND DRIVEWAYS SHALL BE CONTINUOUSLY MAINTAINED FOR THE DURATION OF THE PROJECT UNLESS PREVIOUSLY APPROVED BY THE LOCAL JURISDICTION.
- ANY LANE CLOSURE REQUIRES APPROVAL BY THE LOCAL JURISDICTION DEPARTMENT AS WELL AS ADVANCED NOTICE OF 72 HOURS WHEN THE LANE CLOSURE IS TO OCCUR. CONTRACTOR TO TAKE ADDITIONAL CONSIDERATION IN COMMUNICATION OF SPECIFIC HOMES AND BUSINESSES THAT ARE TO BE IMPACTED.
- ENSURE EMERGENCY VEHICLES CAN ACCESS AT ALL TIMES. ANY BLOCKAGES OR DIVERSIONS SHOULD BE COMMUNICATED TO LOCAL EMERGENCY SERVICES IN ADVANCE.
- DURING PERIODS OF LANE CLOSURES, THE CONTRACTOR IS TO PROVIDE A DOT CERTIFIED SITE TRAFFIC SUPERVISOR FOR THE INSTALLATION, MAINTENANCE, AND REMOVAL OF TRAFFIC CONTROL DEVICES (E.G. BARRICADES, SIGNS, ARROW PANELS, ETC.) AS OUTLINED IN THE STATE'S DEPARTMENT OF TRANSPORTATION STANDARDS
- TRAFFIC CONTROL MEASURES ARE TO BE MONITORED, PARTICULARLY DURING PEAK HOURS. TO ENSURE THAT CONTROL MEASURES ARE EFFECTIVE AND THAT NO DANGEROUS SITUATIONS ARISE.
- BE PREPARED TO ADJUST TRAFFIC CONTROL MEASURES AS NEEDED. WHAT WORKS DURING ONE PHASE OF CONSTRUCTION MAY NOT BE SUITABLE FOR ANOTHER.
- 10. IF WORK IS BEING PERFORMED AT NIGHT, ENSURE ALL TRAFFIC CONTROL DEVICES ARE CLEARLY VISIBLE. THIS MIGHT REQUIRE ADDITIONAL LIGHTING OR REFLECTIVE MATERIALS.
- 11. MAINTAIN THOROUGH DOCUMENTATION OF ALL TRAFFIC CONTROL MEASURES. INCLUDING ADJUSTMENTS MADE DURING THE CONSTRUCTION PROCESS.

SOURCES OF INFORMATION*		
DESCRIPTION	COMPANY	DATE
BOUNDARY SURVEY	R&R ENGINEERS-SURVEYORS, LLC	3/17/2023
TOPOGRAPHIC SURVEY	R&R ENGINEERS-SURVEYORS, LLC	3/17/2023
ARCHITECTURAL INFORMATION & DIMENSIONS	SOPHER SPARN ARCHITECTS, LLC	11/19/2024
HISTORICAL/CULTURAL RESOURCE SURVEY		
BUILDING UTILITY CONNECTION LOCATIONS	RJA ENGINEERING	11/15/2024
GEOTECHNICAL REPORT	PARTNER ASSESSMENT CORPORATION	3/22/2023
ENVIRONMENTAL REPORT		
TRAFFIC IMPACT ANALYSIS	LSC TRANSPORTATION CONSULTANTS	TBD
MECHANICAL, ELECTRICAL, PLUMBING (MEP)	RJA ENGINEERING	11/15/2024

* = THE FOLLOWING SOURCES HAVE BEEN UTILIZED IN PREPARATION OF THESE PLANS. IT IS POSSIBLE THAT UPDATES TO THESE SOURCES HAVE BEEN COMPLETED FOLLOWING ISSUANCE OF THESE PLANS, AND IT IS THE CONTRACTOR'S RESPONSIBILITY TO OBTAIN THE LATEST VERSION.

PDP & REZONING SUBMITTAL

02.07.2025

GENERAL NOTES

PAVING NOTES

- LOCAL JURISDICTIONAL REQUIREMENTS SHALL OVERRIDE THE SPECIFICATIONS ON THESE GENERAL NOTES PAGES, IF APPLICABLE.
- EXISTING PAVEMENT SHALL BE SAWCUT IN PROPOSED PATCH AREAS TO A DEPTH REQUIRED FOR THE PROPOSED PAVEMENT AS SHOWN ON THE PLANS.
- ALL PROPOSED ASPHALT PATCHES AND SURFACING OVERLAID ON EXISTING PAVEMENT 3 SHALL BE FEATHERED SMOOTHLY INTO THE EXISTING PAVEMENT, AND MAY REQUIRE THE NEED FOR A MILLED BUTT-JOINT AS DIRECTED BY THE ENGINEER.
- 4. ALL SIDEWALKS ARE TO BE 4" THICK IN NON-VEHICULAR AREAS, UNLESS OTHERWISE NOTED.
- 5. UNLESS OTHERWISE STATED IN THE SPECIFICATIONS OR UNDER A SEPARATE ITEM, ALL EXCESS MILLINGS SHALL REMAIN THE PROPERTY OF THE CONTRACTOR AND SHALL BE DISPOSED OF AT AN APPROVED SITE PROVIDED BY THE CONTRACTOR.
- NO SURFACING SHALL BE APPLIED TO ANY MANHOLE COVERS, FRAMES, VALVE BOXES, GAS DROPS, ETC. EXISTING APPURTENANCES ARE TO BE ADJUSTED TO FINISHED GRADE.
- ALL EXISTING AND PROPOSED UTILITY AND STORM SEWER STRUCTURE TOPS THAT ARE TO BE EXPOSED WITHIN ANY SIDEWALK OR PAVED AREAS SHALL BE ADJUSTED SO THAT THE TOP SURFACE OF COVERS OR FRAMES SHALL BE FLUSH WITH THE SIDEWALK OR PAVEMENT SURFACE.
- ANY FACILITIES DAMAGED THAT ARE LOCATED OUTSIDE THE LIMITS OF DISTURBANCE SHALL 8. BE REPAIRED IN A TIMELY MANNER AND AT THE EXPENSE OF THE CONTRACTOR.
- THE CONTRACTOR IS TO ENSURE THAT THE QUALITY OF MATERIALS AND WORKMANSHIP FOR PAVING MEETS OR EXCEEDS THE STANDARDS SET BY LOCAL AND STATE REGULATIONS.
- 10. PAVING OPERATIONS SHALL NOT BE CONDUCTED DURING RAINY WEATHER OR WHEN THE BASE MATERIAL IS WET OR FROZEN.
- 11. PROPER COMPACTION OF THE SUBGRADES, BASE, AND SURFACE LAYERS IS ESSENTIAL. THE CONTRACTOR SHALL ENSURE THAT THESE ARE COMPACTED TO THE SPECIFICATIONS PROVIDED IN THE PLANS OR DICTATED BY STATE/LOCAL REGULATION.
- 12. ALL JOINTS SHALL BE PROPERLY SEALED TO PREVENT WATER INFILTRATION AND ENSURE THE LONGEVITY OF THE PAVEMENT.
- 13. FRESHLY LAID ASPHALT SHALL BE PROTECTED FROM TRAFFIC UNTIL IT HAS COOLED AND HARDENED.
- 14. THE CONTRACTOR SHALL DISTURB NO MORE GROUND THAN WHAT IS NECESSARY FOR CONSTRUCTION. NO OPEN EXCAVATED TRENCH, OR OTHER UNSAFE CONDITION, WILL BE LEFT OVERNIGHT
- 15. UPON COMPLETION OF PAVING WORK, THE CONTRACTOR SHALL CLEAN UP AND REMOVE ALL SURPLUS MATERIALS, LEAVING THE SITE IN A NEAT AND ORDERLY CONDITION.
- 16. CONTRACTOR SHALL REFERENCE GEOTECHNICAL REPORT FOR PAVEMENT THICKNESS AND FOUNDATION RECOMMENDATIONS.

TREES & VEGETATION NOTES

- LOCAL JURISDICTIONAL REQUIREMENTS SHALL OVERRIDE THE SPECIFICATIONS ON THESE GENERAL NOTES PAGES, IF APPLICABLE.
- THE CONTRACTOR SHALL VERIFY WHICH TREES ARE TO BE SAVED AND PROTECTED PRIOR TO COMMENCING CONSTRUCTION. DURABLE FENCE PROTECTION BARRIERS SHALL BE INSTALLED AROUND ALL TREES TO BE SAVED WITH FENCE PLACEMENT A MINIMUM OF 10 FEET FROM TREE CANOPY OR THE DRIP LINE, WHICHEVER IS GREATER.
- 3. THE CONTRACTOR SHALL NOT DISTURB AREAS AROUND EXISTING TREES TO BE SAVED.
- THE CONTRACTOR SHALL PROTECT EXISTING GRASS, LANDSCAPING, AND TREES NOT IN DIRECT CONFLICT WITH PROPOSED IMPROVEMENTS DURING CONSTRUCTION. GRASSED AREAS DAMAGED DURING CONSTRUCTION SHALL BE RESTORED BY THE CONTRACTOR WITH TOPSOIL AND SODDED.
- THE CONTRACTOR SHALL REMOVE ALL VEGETATION, TREES, STUMPS, GRASSES, ORGANIC SOIL, DEBRIS, AND DELETERIOUS MATERIALS IN CONFLICT WITH IMPROVEMENTS.
- AFTER THE CONTRACTOR HAS REMOVED THE MATERIALS AS DESCRIBED ABOVE. HE SHALL STRIP SUITABLE TOPSOIL AND STOCKPILE FOR LANDSCAPING USE.
- THE CONTRACTOR SHALL EXERCISE EXTRA CARE TO AVOID DAMAGE TO TREES AND ORNAMENTAL SHRUBS PLANTED AND MAINTAINED BY PROPERTY OWNERS IN THE TERRACES FRONTING THEIR PROPERTY.
- CONTRACTOR SHALL COMPENSATE OWNER FOR DAMAGE TO TREES NOT SHOWN TO BE REMOVED IN PLANS.
- OAK TREES DAMAGED DURING CONSTRUCTION SHALL BE SEALED WITHIN SIX HOURS OF 9 DAMAGE TO PREVENT INFECTION BY OAK WILT.

GRADING & DRAINAGE NOTES

- REPORT

- IS MORE STRINGENT.
- UNACCEPTABLE AREAS.
- CONTINUOUS GRADE.

- STRUCTURE IS WATERTIGHT.
- AND PAVED AREAS.
- DIRECTION.
- INVERT IN TO INVERT OUT.

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

LOCAL JURISDICTIONAL REQUIREMENTS SHALL OVERRIDE THE SPECIFICATIONS ON THESE GENERAL NOTES PAGES, IF APPLICABLE.

ELEVATIONS DEPICTED HEREON ARE BASED UPON THE NORTH AMERICAN VERTICAL DATUM OF 1988, (NAVD 88), OR AS SPECIFIED ON THE PLAN SET.

THE CONTRACTOR SHALL THOROUGHLY REVIEW ASSOCIATED PROFESSIONAL REPORTS (ENVIRONMENTAL, DRAINAGE, GEOTECHNICAL, ETC.) AND IMPLEMENT SITE SPECIFIC RECOMMENDATIONS OF THESE REPORTS.

PRIOR TO GRADING, CONTRACTOR TO COORDINATE WITH UTILITY CONTRACTORS TO ENSURE NO UNDERGROUND UTILITIES ARE DAMAGED DURING OPERATIONS.

CONTRACTOR SHALL ENSURE ALL NECESSARY PERMITS RELATED TO GRADING AND DRAINAGE HAVE BEEN OBTAINED PRIOR TO COMMENCING WORK. IF CONTRACTOR DOES NOT ACCEPT EXISTING TOPOGRAPHY AS SHOWN ON THE PLANS,

WITHOUT EXCEPTION, HE SHALL HAVE MADE, AT HIS EXPENSE, A TOPOGRAPHIC SURVEY BY A REGISTERED LAND SURVEYOR AND SUBMIT IT TO THE OWNER AND ENGINEER FOR REVIEW.

ANY SETTLEMENT OR SOIL ACCUMULATION BEYOND THE PROPERTY LIMITS DUE TO GRADING OR EROSION SHALL BE REPAIRED IMMEDIATELY.

STREET CONTOURS SHOWN ON THESE PLANS REPRESENT TOP OF ASPHALT ELEVATION.

9. COMPACTION FILL MATERIAL SHALL BE COMPACTED ACCORDING TO THE APPROPRIATE GOVERNING AGENCY REGULATIONS AND THE RECOMMENDATIONS OF THE GEOTECHNICAL

10. STATION AND OFFSET INFORMATION FOR STORM DRAIN INFRASTRUCTURE REFERENCE THE CENTER OF THE SPECIFIED STRUCTURE BOTTOM. CONTRACTOR IS TO CONFIRM LENGTHS ASSOCIATED WITH PIPES THAT INCLUDE A MITERED END SECTION.

11. PRESSURIZED MAINS OR OTHER "DRY UTILITY" LINES IN CONFLICT WITH GRAVITY SEWER OR GRAVITY STORM ARE TO BE RESOLVED BY ADJUSTING THE PRESSURIZED AND/OR "DRY UTILITY" SYSTEMS. CONTRACTOR TO IMMEDIATELY NOTIFY ENGINEER IF CONFLICTS ARE OBSERVED THAT ARE NOT DEPICTED ON THESE PLANS.

12. WHERE IT IS NECESSARY TO DEFLECT PIPE EITHER HORIZONTALLY OR VERTICALLY, PIPE JOINT DEFLECTION SHALL NOT EXCEED THE MAXIMUM VALUES SPECIFIED IN AWWA C-600-B2 OR BOX OF THE PIPE MANUFACTURER'S MAXIMUM RECOMMENDED DEFLECTION, WHICHEVER

13. PROOF ROLL BUILDING AND ALL PARKING AREAS. NOTIFY THE ENGINEER OF ANY

14. EDGE OF NEW PAVEMENT TO BE FLUSH WITH EXISTING PAVEMENT TO ASSURE A SMOOTH,

15. ALL SIDEWALK CURB AND GUTTER, STREET PAVING, CURB CUTS, DRIVEWAY APPROACHES. HANDICAP RAMPS, ETC. CONSTRUCTED OUTSIDE THE PROPERTY LINE IN THE RIGHT-OF-WAY SHALL CONFORM TO ALL MUNICIPAL, ADA, AND STATE SPECIFICATIONS AND REQUIREMENTS.

16. CONTRACTOR IS RESPONSIBLE FOR ENSURING THAT ALL ADA ACCESSIBLE SIDEWALKS MAINTAIN SLOPES NOT TO EXCEED 5% LONGITUDINALLY AND 2% CROSS SLOPES. SLOPES AT ACCESSIBLE PARKING SPACES AND ACCESS AISLE SHALL BE A MAXIMUM 2%, AND THE MANEUVERING CLEARANCE AT EXTERIOR ENTRANCES SHALL HAVE A MAXIMUM SLOPE OF 2%. THE MAXIMUM SLOPE OF A RAMP SHALL NOT EXCEED 12:1 (H:V)

17. FOR AREAS OUTSIDE THE PROPERTY LINES, REPAIR AND/OR REPLACE ALL DAMAGE DONE TO EXISTING ELEMENTS (SIDEWALKS, PAVING, LANDSCAPING, ETC.) AS REQUIRED BY THE OWNER AND/OR GOVERNING AUTHORITY.

18. CONTRACTOR IS RESPONSIBLE FOR DEMOLITION OF EXISTING STRUCTURES INCLUDING REMOVAL OF ANY EXISTING UTILITIES SERVING THE STRUCTURE. UTILITIES ARE TO BE REMOVED TO THE RIGHT-OF-WAY. CONTRACTOR SHALL DISPOSE OF ALL WASTE/DEBRIS FROM SITE TO A PROPER AND APPROVED WASTE SITE.

19. THE CONTRACTOR IS SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION OF EXISTING UTILITIES AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE VARIOUS UTILITY COMPANIES, AND WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE FIELD. THE INFORMATION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE CONTRACTOR MUST CALL THE APPROPRIATE UTILITY COMPANIES AT LEAST 72 HOURS BEFORE ANY EXCAVATION TO REQUEST THE EXACT FIELD LOCATION OF UTILITIES. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO RELOCATE ALL EXISTING UTILITIES WHICH CONFLICT WITH THE PROPOSED IMPROVEMENTS SHOWN ON THE PLANS.

20. ALL CUT OR FILL SLOPES SHALL BE 4:1 (H:V) OR FLATTER UNLESS OTHERWISE NOTED.

21. EXISTING DRAINAGE STRUCTURES SHALL BE INSPECTED AND REPAIRED AS NEEDED, AND EXISTING PIPES SHALL BE CLEANED OUT TO REMOVE ALL SILT AND DEBRIS.

22. IF ANY EXISTING STRUCTURES TO REMAIN ARE DAMAGED DURING CONSTRUCTION IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO REPAIR AND/OR REPLACE THE EXISTING STRUCTURE AS NECESSARY TO RETURN IT TO EXISTING CONDITIONS OR BETTER.

23. ALL STORM PIPE ENTERING STRUCTURES SHALL BE GROUTED TO ASSURE CONNECTION AT

24. CONTRACTOR SHALL ASSURE POSITIVE DRAINAGE AWAY FROM BUILDINGS FOR ALL NATURAL

25. CONTRACTOR TO VERIFY EXISTING PAVEMENT GRADES WHERE MODIFICATIONS AND/OR DRIVEWAY CONNECTIONS ARE BEING MADE. IF THERE IS ANY DEVIATION FROM THE EXISTING GRADES SHOWN HEREON THE CONTRACTOR MUST CONTACT ENGINEER OF RECORD FOR

26. ALL UNSURFACED AREAS DISTURBED BY GRADING OPERATION SHALL RECEIVE 3" OF TOPSOIL AND BE SODDED TO MATCH SURROUNDING AREA.

27. ALL STORM STRUCTURES SHALL HAVE A SMOOTH UNIFORM POURED MORTAR INVERT FROM

28. ALL STORM PIPE SHALL BE REINFORCED CONCRETE PIPE WITHIN THE RIGHT OF WAY, OR AS SPECIFIED IN THESE DOCUMENTS.

29. CONTRACTOR TO RAISE ALL EXISTING UTILITY MANHOLES, VAULT BOXES, METER BOXES, ETC. TO PROPOSED GRADES UNLESS OTHERWISE NOTED.

30. CONTRACTOR SHALL REVIEW ALL GEOTECHNICAL REPORTS FOR SUPPLEMENTAL CONSTRUCTION RECOMMENDATIONS.

UTILITY NOTES

- LOCAL JURISDICTIONAL REQUIREMENTS SHALL OVERRIDE THE SPECIFICATIONS ON THESE GENERAL NOTES PAGES, IF APPLICABLE.
- THE CONTRACTOR IS SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION OF EXISTING UTILITIES AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE VARIOUS UTILITY COMPANIES, AND WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE FIELD. THE INFORMATION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE CONTRACTOR MUST PLACE AN 811 TICKET, AND/OR CONTACT THE UTILITY NOTIFICATION CENTER OF COLORADO (1-800-922-1987). CONTRACTOR TO COORDINATE WITH THE APPROPRIATE UTILITY COMPANIES AT LEAST 72 HOURS BEFORE ANY EXCAVATION. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO RELOCATE ALL EXISTING UTILITIES WHICH CONFLICT WITH THE PROPOSED IMPROVEMENTS SHOWN ON THE PLANS. THIS WORK BY THE CONTRACTOR SHALL BE CONSIDERED INCIDENTAL TO THE CONTRACT AND NO ADDITIONAL COMPENSATION SHALL BE ALLOWED. ANY DEVIATION FROM THESE PLANS SHALL NEED TO BE APPROVED BY THE ENGINEER OF RECORD AND/OR AGENCIES WITH SIGNED AND WRITTEN CONSENT.
- THE CONTRACTOR IS TO VERIFY THE HORIZONTAL AND VERTICAL LOCATION OF ALL UTILITIES, WHETHER SHOWN OR NOT, PRIOR TO CONSTRUCTION. REPORT ANY CONFLICTS TO ENGINEER.
- THE CONTRACTOR SHALL MAINTAIN OPEN COMMUNICATION WITH UTILITY PROVIDERS THROUGHOUT THE PROJECT TO ENSURE THAT ANY DISRUPTIONS TO SERVICE ARE MINIMIZED AND COORDINATED.
- BEFORE STARTING ANY EXCAVATION, THE CONTRACTOR SHALL USE A UTILITY LOCATING SERVICE TO IDENTIFY AND MARK THE LOCATION OF ALL UNDERGROUND UTILITIES.
- 6. NO TEMPORARY CONNECTIONS TO FIRE HYDRANTS MAY BE MADE WITHOUT THE EXPRESS AUTHORIZATION OF THE UTILITY OWNER.
- BACKFLOW DEVICES ARE CRUCIAL FOR PREVENTING CONTAMINATION OF THE POTABLE WATER SUPPLY. THE CONTRACTOR SHOULD ENSURE THAT THESE DEVICES ARE INSTALLED CORRECTLY, TESTED REGULARLY, AND PASS ALL LOCALLY REQUIRED INSPECTIONS.
- NO VALVES IN THE OWNER'S WATER DISTRIBUTION SYSTEM SHALL BE OPERATED BY THE CONTRACTOR WITHOUT PRIOR PERMISSION OF THE OWNER. THE CONTRACTOR SHALL NOTIFY THE OWNER WHEN A VALVE IS TO BE OPERATED AND SHALL ONLY OPERATE THE VALVE IN THE PRESENCE OF THE OWNER'S REPRESENTATIVE. COORDINATE ALL SHUTDOWN OF MAINS FOR TIE-INS WITH THE OWNER 72 HOURS PRIOR TO WORK BEING COMPLETED. THE CONTRACTOR SHALL INSPECT THE MATERIALS FOR DEFECTS AT THE TIME THEY ARE UNLOADED, AND ANY MATERIALS FOUND DEFECTIVE SHALL BE REMOVED FROM THE SITE.
- ALL UTILITY WORK SHALL BE INSPECTED BY A QUALIFIED PROFESSIONAL TO ENSURE IT MEETS THE DESIGN SPECIFICATIONS AND ANY APPLICABLE REGULATIONS.
- 10. THE CONTRACTOR SHALL HAVE EMERGENCY PROTOCOLS IN PLACE IN CASE OF UTILITY DAMAGE OR OTHER UNFORESEEN ISSUES. THIS INCLUDES IMMEDIATE NOTIFICATION OF ALL APPROPRIATE PARTIES AND TAKING STEPS TO MITIGATE ANY POTENTIAL HAZARDS.
- WHEN WORKING NEAR WATER SOURCES OR IN ENVIRONMENTALLY SENSITIVE AREAS, THE CONTRACTOR SHALL TAKE EXTRA PRECAUTIONS TO PREVENT CONTAMINATION OR DAMAGE TO THE ENVIRONMENT.
- 12. NO TIE-IN SHALL BE MADE TO THE EXISTING UTILITY SYSTEM UNTIL ALL TEST RESULTS HAVE BEEN PROVIDED TO THE LOCAL PUBLIC WORKS DEPARTMENT AND ARE VERIFIED.
- PRIOR TO TESTING, ANY CONNECTION TO THE PUBLIC WATER SUPPLY SHALL BE THROUGH AN 13. APPROVED AND TESTED BACKFLOW DEVICE.
- 14. PLUG EXISTING SEWER BEFORE INSTALLING ANY NEW SEWER MAIN.
- 15. CONCRETE PADS SHALL BE PROVIDED AROUND CLEAN-OUTS (24"X24"X4"). 16. ALL WATER JOINTS ARE TO BE MECHANICAL JOINTS WITH THRUST BLOCKING AS CALLED OUT
- IN STATE/LOCAL SPECIFICATIONS FOR WATER MAIN CONSTRUCTION. WATER AND SANITARY SEWER SHOULD BE KEPT TEN (10') APART (PARALLEL) OR 18" APART 17.
- WHEN CROSSING (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE), 18. THE CONTRACTOR SHALL INSTALL ALL WATER MAINS BELOW THE JURISDICTIONAL FROST
- CONTRACTOR TO PLACE IDENTIFICATION RIBBON AND TRACER WIRE PER UTILITY PROVIDER'S 19. SPECIFICATIONS.
- CAUTION SHOULD BE EXERCISED DURING THE INSTALLATION OF NEW SIGNS. BOTH EXISTING AND PROPOSED UTILITIES MAY EXIST IN THE VICINITY OF PROPOSED SIGN LOCATIONS, NEW WATER MAINS AND FORCE MAINS TO BE PVC C900. UNLESS OTHERWISE SHOWN IN 20. PLANS AND APPROVED BY UTILITY PROVIDER. HYDROSTATIC TESTING WILL BE PERFORMED INCLUDING THE POTENTIAL FOR UTILITIES AND OTHER OBJECTS NOT IDENTIFIED IN THESE UNDER THE SUPERVISION OF THE UTILITY PROVIDER. PLANS.
- NEW SEWER MAINS ARE TO BE SDR31 PVC UNLESS OTHERWISE SHOWN IN PLANS AND 21. APPROVED BY THE UTILITY PROVIDER.
- 22. CONTRACTORS SHOULD USE HTH FOR DISINFECTION OF WATER LINES (NOT CHLORINE INJECTION) UNLESS APPROVED OTHERWISE PRIOR TO ISSUANCE OF PERMIT.
- 23. NEW WATERLINES SHALL BE TIED INTO THE EXISTING WATER SYSTEM UNDER THE SUPERVISION OF LOCAL PUBLIC WORKS PERSONNEL NO LATER THAN 14 DAYS AFTER PASSING BACTERIOLOGICAL TESTS.
- 24. THE CONTRACTOR IS RESPONSIBLE FOR ENSURING THAT NO OVERFLOWS OR SPILLAGE OF SEWER OCCURS. SHOULD THIS OCCUR, THE CONTRACTOR SHALL:
 - A. IDENTIFY THE SOURCE OF THE SPILL AND ATTEMPT TO ELIMINATE ANY ADDITIONAL SPILLAGE.
 - B. NOTIFY THE UTILITY PROVIDER.
 - C. CONTAIN THE SPILL IN PLACE AND AVOID CONTAMINATION OF STREAMS.
 - D. DISINFECT THE AREA OF THE SPILL WITH A MIXTURE OF HTH CHLORINE AND WATER.
 - E. ALL WORK SHALL BE DONE ACCORDING TO STATE AND LOCAL GUIDELINES.
- CONTRACTOR TO PROVIDE NOTICE TO RESIDENTS OF SHUTDOWN OF MAIN. CONTRACTOR TO 25. NOTIFY RESIDENTS OF WORK WITHIN THEIR PROPERTY AND OF THE RELOCATION OF METERS. ANY COMPLAINTS BY RESIDENTS ARE TO BE PASSED IMMEDIATELY TO THE UTILITY PROVIDER'S INSPECTOR OR TO THE UTILITY PROVIDER'S OFFICE. TAKE APPROPRIATE MEASURES TO PROTECT EXISTING SANITARY SEWER LATERALS SHOWN IN PLANS. ANY REPAIRS TO BE MADE AT THE CONTRACTORS' EXPENSE.
- ABANDONED CUSTOMER LINES SHALL BE CAPPED OR PLUGGED AT THE PROPERTY LINE. 26.
- 27. ASBESTOS PIPE REMOVAL AND DISPOSAL IS THE CONTRACTOR'S RESPONSIBILITY 28. THE CONTRACTOR SHALL EXERCISE EXTREME CAUTION WHEN EXCAVATING IN THE
- PROXIMITY OF WATER MAINS, WASTEWATER FORCE MAINS, AND GRAVITY MAINS. MAIN LOCATIONS SHOWN ON PLANS MAY NOT BE EXACT. THE CONTRACTOR IS RESPONSIBLE FOR FIELD VERIFYING EXISTING UTILITY LOCATIONS.
- 29. SHOULD A PIPE EMERGENCY OCCUR, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE UTILITY OWNER.
- 30. THE CONTRACTOR SHALL NOTIFY THE UTILITY PROVIDER AT LEAST SEVEN DAYS PRIOR TO COMMENCEMENT OF THE CONSTRUCTION PROJECT. 31. THE CONTRACTOR SHALL NOTIFY THE UTILITY PROVIDER AT LEAST 48 HOURS PRIOR TO ANY
- UTILITY CONSTRUCTION.
- CONSTRUCTION ACTIVITIES SHALL NOT CAUSE INTERRUPTIONS IN WATER OR WASTEWATER 32. SERVICE. THE CONTRACTOR SHALL COORDINATE PREAPPROVED INTERRUPTIONS OF SERVICE WITH THE INSPECTORS 7 WORKING DAYS IN ADVANCE.
- 33. THE MATERIALS, PRODUCTS, AND CONSTRUCTION OF ALL UTILITIES CONNECTING TO THE MUNICIPAL SYSTEMS SHALL BE IN CONFORMANCE WITH MUNICIPAL UTILITIES STANDARDS AND CONSTRUCTION SPECIFICATIONS.
- ALL MAINS AND FACILITIES WITHIN THE LIMITS OF THE PROJECT SHALL BE SUPPORTED AND 34 PROTECTED AGAINST DAMAGE DURING CONSTRUCTION.

MAIKER BOYERS

7295 WASHINGTON ST., ADAMS COUNTY, CO 80229

CASE NO. PRC2024-00017

- 35. THE CONTRACTOR SHALL ADJUST ALL EXISTING MAINS AND FACILITIES IN CONFLICT WITH NEW GRADE. NEW OR ALTERED ROADWAYS, SIDEWALKS, DRIVEWAYS, OR STORM WATER IMPROVEMENTS. FACILITIES TO BE ADJUSTED INCLUDE, BUT ARE NOT LIMITED TO PIPELINES. PUMP STATIONS, VALVE BOXES, AIR RELEASE VALVES, FIRE HYDRANTS, MANHOLE COVERS, AND METERS.
- THE CONTRACTOR SHALL PROVIDE FOR BYPASSING AND/OR HAULING WASTEWATER DURING APPROVED INTERRUPTIONS OF WASTEWATER FLOWS AND CONNECTIONS. THE CONTRACTOR SHALL SUBMIT A BYPASS PLAN SIGNED AND SEALED BY A PROFESSIONAL ENGINEER TO THE UTILITY COMPANY FOR APPROVAL PRIOR TO IMPLEMENTATION BY CONTRACTOR.
- ALL VALVES INSTALLED AS PART OF THIS CONSTRUCTION PROJECT SHALL REMAIN CLOSED DURING CONSTRUCTION. KEEP VALVES ON ALL WET TAPS CLOSED UNTIL CLEARED BY INSPECTOR. DO NOT CONNECT NEWLY CONSTRUCTED WATER MAINS TO ANY EXISTING WATER MAINS UNLESS CLEARED BY UTILITY PROVIDER.
- THE CONTRACTOR SHALL PROVIDE A JUMPER ASSEMBLY WITH A BACKFLOW PREVENTER FOR MAKING TEMPORARY CONNECTIONS TO AN EXISTING POTABLE WATER SOURCE IN ORDER TO CHLORINATE AND FLUSH NEW WATER MAINS WITH POTABLE WATER. ANY TEMPORARY POTABLE WATER CONNECTIONS TO FORCE MAIN SHALL ALSO BE EQUIPPED WITH A BACKFLOW PREVENTER.
- FOR PVC PIPE THAT WILL BE OWNED AND MAINTAINED BY THE MUNICIPALITY, NO PIPE 39. BENDING IS ALLOWED. THE MAXIMUM ALLOWABLE TOLERANCE FOR JOINT DEFLECTION IS 0.75 DEGREES (3-INCHES PER JOINT PER 20 FT STICK OF PIPE.) ALIGNMENT CHANGE SHALL BE MADE ONLY WITH SLEEVES AND FITTINGS.
- FOR NON-PVC PIPE THAT WILL BE OWNED AND MAINTAINED BY THE MUNICIPALITY, LONG RADIUS CURVES, EITHER HORIZONTAL OR VERTICAL, MAY BE INSTALLED WITH STANDARD PIPE BY DEFLECTIONS AT THE JOINTS. MAXIMUM DEFLECTIONS AT PIPE JOINTS, FITTINGS AND LAYING RADIUS FOR THE VARIOUS PIPE LENGTHS SHALL NOT EXCEED 75% OF THE PIPE MANUFACTURER'S RECOMMENDATION.
- MAINTAIN UTILITY PROVIDER'S RECOMMENDED MINIMUM COVER OVER ALL PROPOSED WATER, WASTEWATER, AND RECLAIMED WATER LINES.
- 42. ANY LIGHTING SHOWN HEREON IS AS SPECIFIED BY THE CLIENT AND IS INCLUDED FOR INFORMATION PURPOSES ONLY, AS DIRECTED BY THE OWNER AND/OR PUBLIC AGENCY REQUIREMENTS. R&R ENGINEERS-SURVEYORS. INC. HAS NOT PERFORMED THE LIGHTING DESIGN, AND THEREFORE DOES NOT WARRANT AND IS NOT RESPONSIBLE FOR THE DEGREE AND/OR ADEQUACY OF ILLUMINATION ON THIS PROJECT.
- 43. CONTRACTOR SHALL MAINTAIN ELECTRICAL SERVICE TO ALL EXISTING BUILDINGS, TRANSFORMERS TO REMAIN, AND ALL EXISTING SITE LIGHTS DURING ALL PHASES OF CONSTRUCTION.
- 44. ANY SEPTIC SYSTEMS DEPICTED ON THESE PLANS ARE REPRESENTATIVE ONLY. A SEPTIC SYSTEM SHALL REQUIRE DESIGN AND PERMITTING TO BE PERFORMED BY OTHERS.
- 45. ALL WATER WELLS SHALL BE TESTED, AND APPROVED BY STATE DEP AND LOCAL HEALTH DEPARTMENT PRIOR TO USE ON PRIVATE HOMES. WELLS WILL NOT BE ALLOWED FOR PUBLIC POTABLE WATER CONSUMPTION. WELLS WILL NOT BE ALLOWED AS A SOURCE OF FIRE PROTECTION.

SIGNAGE & STRIPING NOTES

- LOCAL JURISDICTIONAL REQUIREMENTS SHALL OVERRIDE THE SPECIFICATIONS ON THESE GENERAL NOTES PAGES, IF APPLICABLE.
- 2. STRIPING SHALL REFER TO COLORADO DOT STANDARD PLANS S-627-1
- ALL EXISTING SIGNS WITHIN THE PROJECT LIMITS SHALL REMAIN UNLESS OTHERWISE NOTED IN THE PLANS OR AS DIRECTED BY THE ENGINEER. SIGN LOCATIONS SHOWN ON PLANS ARE APPROXIMATE AND MAY REQUIRE FIELD ADJUSTMENT. AS DIRECTED BY THE ENGINEER.
- ANY EXISTING SIGNS TO REMAIN THAT ARE DISTURBED OR RELOCATED DURING CONSTRUCTION SHALL BE RESET TO CURRENT STANDARDS FOR HEIGHT, OFFSET, AND METHOD OF INSTALLATION.
- CAUTION SHOULD BE EXERCISED WHILE RELOCATING EXISTING SIGNS SO AS TO PREVENT DAMAGE TO THE SIGN. DAMAGE BEYOND USE, AS DETERMINED BY THE ENGINEER, SHALL REQUIRE REPLACEMENT BY THE CONTRACTOR AT HIS EXPENSE.
- ALL SIGNS SHALL BE COMPLIANT WITH MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (MUTCD) AND DOT STANDARDS, AS WELL AS ANY ADDITIONAL LOCAL REQUIREMENTS.
- ALL STRIPING AND PAVEMENT MARKINGS IN THE RIGHT-OF-WAY SHALL BE THERMOPLASTIC AND SHALL NOT BE APPLIED UNTIL A MINIMUM OF 30 DAYS AFTER THE PLACEMENT OF THE FINAL ASPHALT SURFACE. IN THE INTERIM. STRIPING SHALL BE PAINT AND ANY REQUIRED RPM'S INSTALLED PER THE PLANS. DO NOT STRIPE ACROSS MANHOLE LIDS OR DRAINAGE GRATES.
- STRIPING WITHIN PRIVATE PROPERTY IS TO FOLLOW DOT GUIDELINES WHERE PRACTICABLE. PAINT MAY BE UTILIZED FOR PARKING STRIPING AND LANE STRIPING WITHIN PRIVATE DEVELOPMENT
- REFLECTIVE PAVEMENT MARKINGS (RPM'S) SHALL BE INSTALLED IN ALL LOCATIONS AS 10. REQUIRED BY DOT DESIGN STANDARD (LATEST EDITION).
- ANY PAVEMENT MARKINGS AND RPM'S THAT ARE DESTROYED, DAMAGED, OR DIMINISHED BY 11. CONSTRUCTION ACTIVITIES FOR UP TO 500 FEET IN EITHER DIRECTION BEYOND THE LIMITS OF CONSTRUCTION SHALL BE REPLACED OR REFURBISHED BY THE CONTRACTOR.
- 12. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE MAINTENANCE OF THE ADJACENT RIGHT-OF-WAYS FOR THE DURATION OF CONSTRUCTION. AT A MINIMUM, THE CONTRACTOR SHALL MOW THE RIGHT-OF-WAY ON AN AS NEEDED BASIS AND MAINTAIN THE DRAINAGE CONVEYANCE SYSTEM. ADDITIONAL MAINTENANCE MAY BE REQUIRED ON A CASE-BY-CASE BASIS
- ALL SIGNS AND STRIPING SHALL BE CLEARLY VISIBLE TO DRIVERS, PEDESTRIANS, AND OTHER 13. ROAD USERS. THIS INCLUDES ENSURING THAT SIGNS ARE NOT OBSCURED BY VEGETATION, OTHER STRUCTURES, OR DIRT/GRIME.
- 14. ALL HANDICAPPED SPACES SHALL HAVE AN ABOVE GRADE IDENTIFICATION SIGN MEETING ADA AND OTHER APPROPRIATE GOVERNING AGENCY STANDARDS.

PDP & REZONING SUBMITTAL

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

No. Date

MAIKER BOYERS

7295 WASHINGTON ST., ADAMS COUNTY, CO 80229

DEMOLITION LEGEND

EXISTING	DEMOLITION
— т ———	т
- CATV	—— CATV ——
– F/O ———	— F/O —
- GAS	—— GAS ——
- OHE	OHE
- UGE	UGE
- SS	SS
- ST	
— W —	— w —
X	
=====	
-5820	
- 5822	
FM	FM
E	
(ر ــــ
-Ŏ-	₽
TR	TR
CATV	
CATV	CATV
(\mathbb{T})	Ο
Τ	Τ
FO	FO
GM	GM
GAS	GAS
\bowtie	×
\bigcirc	0
ST	O
	00
	O
¥	`
	+++ +~
$\langle M \rangle$	
	•
	131
Å.	Ġ

COMMUNICATIONS
CABLE TV
FIBER OPTIC
NATURAL GAS PIPE
POWER - OVERHEAD
POWER - UNDERGROUND
SANITARY SEWER PIPE
ROAD CORB AND GUTTER
SIDEWALK
WALL - RETAINING
MAJOR CONTOUR
MINOR CONTOUR
ELECTRICAL STRUCTURE
GUY WIRE
LIGHT POLE
TRANSFORMER PAD
COMMUNICATIONS MANHOLE
COMMUNICATIONS STRUCTURE
FIBER OPTIC STRUCTURE
GAS METER
GAS VALVE
SANITARY SEWER CLEANOUT
STORM SEWER MANHOLE
STORM SEWER AREA INLET
STORM SEWER CURB INLET
STORM SEWER FLARED
END SECTION
IRRIGATION STRUCTURE
WATER FITTING
WATER METER

ADA ACCESSIBLE PARKING SIGN TREES

PDP & REZONING SUBMITTAL EXISTING CONDITIONS AND DEMO PLAN

02.07.2025 C1.00

DO NOT SCALE FROM DRAWING. VERIFY ALL DIMENSIONS ON SITE.

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

BENCHMARK (NAVD83 Datum) ORIGINATING BENCHMARK: SET MAG NAIL IN ASPHALT AS SHOWN ON SHEET 2. USED OPUS PROCESSING FOR COORDINATE AND ELEVATION RESULT ON MARCH 9, 2023, HAVING USED 13,340 OF 14,196 OBSERVATIONS (94%) AND 68 OF 71 FIXED AMBIGUITIES (96%). (LIES APPROXIMATELY 9.2' NORTH OF WESTERLY MOST CORNER OF CONCRETE FOUNDATION.)

NOTICE: DUTY OF COOPERATION RELEASE OF THESE DOCUMENTS CONTEMPLATES FURTHER COOPERATION AMONG THE OWNER, HIS CONTRACTOR, AND THE ARCHITECT. DESIGN AND CONSTRUCTION ARE COMPLEX. ALTHOUGH THE ARCHITECT AND HIS CONSULTANTS HAVE PERFORMED THEIR SERVICES WITH DUE CARE AND DILIGENCE, THEY CANNOT GUARANTEE PERFECTION. COMMUNICATION IS IMPERFECT AND EVERY CONTINGENCY CANNOT BE ANTICIPATED. ANY ERRORS, OMISSIONS, OR DISCREPANCY DISCOVERED BY THE USE OF THESE DOCUMENTS SHALL BE REPORTED IMMEDIATELY TO THE ARCHITECT. FAILURE TO NOTIFY THE ARCHITECT COMPOUNDS MISUNDERSTANDING AND INCREASES CONSTRUCTION COSTS. A FAILURE TO COOPERATE BY SIMPLE NOTICE TO THE ARCHITECT SHALL RELIEVE THE ARCHITECT FROM RESPONSIBILITY FOR ALL CONSEQUENCES ARRIVING OUT OF SUCH CHANGES. THE DESIGNS AND PLANS ARE COPYRIGHT AND ARE NOT TO BE USED OR REPRODUCED WHOLLY OR IN PART WITHOUT THE WRITTEN PERMISSION OF SSARCHITECTS. THE DRAWINGS AND SPECIFICATIONS ARE INSTRUMENTS OF SERVICE AND SHALL REMAIN THE PROPERTY OF THE ARCHITECT WHETHER THE PROJECT FOR WHICH THEY ARE MADE IS EXECUTED OR NOT. COPYRIGHT SSARCHITECTS.

No. Date

MAIKER BOYERS 7295 WASHINGTON ST., ADAMS COUNTY, CO 80229

CASE NO. PRC2024-00017

LEGEND

ELEVATION = 5149.69'

SITE PLAN

PDP & REZONING SUBMITTAL 02.07.2025 C1.01

(NAVD83 Datum) BENCHMARK ORIGINATING BENCHMARK: SET MAG NAIL IN ASPHALT AS SHOWN ON SHEET 2. USED OPUS PROCESSING FOR COORDINATE AND ELEVATION RESULT ON MARCH 9, 2023, HAVING USED 13,340 OF 14,196 OBSERVATIONS (94%) AND 68 OF 71 FIXED AMBIGUITIES (96%). (LIES APPROXIMATELY 9.2' NORTH OF WESTERLY MOST CORNER OF CONCRETE FOUNDATION.)

^L UGE

No. Date

MAIKER BOYERS 7295 WASHINGTON ST., ADAMS COUNTY, CO 80229

LEGEND

POSED

	EXISTING	PROPOSED
	— т —	— т —
	CATV	CATV
	——— F/O ———	—— F/O ——
	GAS	GAS
	OHE	OHE
	UGE	UGE
	ST	
	W	W
	· · ·	<u> </u>
	· · · · · ·	
	X	x
CONNECTION		
Š	EM	EM
	E	Ε
Lc S	((——
	-Ŏ-	-Ծ-
	TR	TR
> X	(\mathbb{I})	T
	Т	Τ
	FO	FO
AS COMPANY TO ROVIDE GAS SERVICE	GM	GM
	G	G
ONNECT 8" SANITARY ERVICE WITH	GAS	GAS
ROPOSED SANITARY ANHOLE	69	
	$\overline{\bigcirc}$	
ONNECTION		
514		
84		
	¥	$\mathbf{\mathbf{x}}$
LATERAL INTO		
XISTING MAIN	וורול	.+. ×
11	_	+++ +^
		$\langle M \rangle$
		٠
	\otimes	
	Q	_
	G.	<u>E</u>
		-0-

COMMUNICATIONS
CABLE TV
FIBER OPTIC
SANITARY SEWER PIPE
STORM SEWER PIPE
WATER PIPE
EASEMENT
FLOODPLAIN LIMIT
LOT LINE
SETBACK
FENCE LINE
ROAD CURB AND GUTTER
SIDEWALK
ELECTRICAL METER
ELECTRICAL STRUCTURE
GUY WIRE
LIGHT POLE
TRANSFORMER PAD
UTILITY POLE
CABLE TV STRUCTURE
COMMUNICATIONS MANHOLE
COMMUNICATIONS STRUCTURE
FIBER OPTIC STRUCTURE
GAS METER
GAS MANHOLE
GAS VALVE
SANITARY SEWER MANHOLE
SANITARY SEWER CLEANOUT
STORM SEWER MANHOLE
STORM SEWER AREA INLET
STORM SEWER CURB INI ET
STORM SEWER ELARED
END SECTION
FIRE HYDRANT
IRRIGATION STRUCTURE
WATER FITTING
WATER METER
WATER TAP / CORP STOP
WATER VALVE
ADA ACCESSIBLE PARKING
SIGN
TREES

ELEVATION = 5149.69'

PDP & REZONING SUBMITTAL 02.07.2025 C1.02 UTILITY PLAN

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

No. Date

MAIKER BOYERS

7295 WASHINGTON ST., ADAMS COUNTY, CO 80229

CASE NO. PRC2024-00017

EROSIONPANDRE EPIME EUBMITTAL CONTROL PLAN - INITIAL

02.07.2025 C2.00

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

No. Date

MAIKER BOYERS

7295 WASHINGTON ST., ADAMS COUNTY, CO 80229

CASE NO. PRC2024-00017

CONSTRUCTION FENCE

SILT FENCE

ROCK SOCK

CONCRETE WASHOUT AREA

LIMITS OF DISTURBANCE

STABILIZED STAGING AREA

VEHICLE TRACKING

INLET PROTECTION

SEDIMENT BASIN

EROSION AND SEDIMENTATION CONTROL PLAN- INTERIM

02.07.2025 C2.01

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

No. Date

MAIKER BOYERS

7295 WASHINGTON ST., ADAMS COUNTY, CO 80229

CASE NO. PRC2024-00017

EROSION AND SEDIMENTATION CONTROL PLANS-FINAL

02.07.2025 C2.02

DO NOT SCALE FROM DRAWING. VERIFY ALL DIMENSIONS ON SITE.

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

•

Con		
	CONSTRUCTION FENCE MAINTENANCE NOTES 1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS	
	POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE. 2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN	
	EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY. 3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON	
	4. CONSTRUCTION FENCE SHALL BE REPAIRED OR REPLACED WHEN THERE ARE SIGNS OF	
	UPSTREAM DISTURBED AREA IS STABILIZED AND APPROVED BY THE LOCAL JURISDICTION. 5. WHEN CONSTRUCTION FENCES ARE REMOVED, ALL DISTURBED AREAS ASSOCIATED WITH THE	
	INSTALLATION, MAINTENANCE, AND/OR REMOVAL OF THE FENCE SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED, OR OTHERWISE STABILIZED AS APPROVED BY LOCAL JURISDICTION.	
	NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.	
	(DETAIL ADAPTED FROM TOWN OF PARKER, COLORADO, NOT AVAILABLE IN AUTOCAD)	
		CF-3
Novemb	ber 2010 Urban Drainage and Flood Control District	
Novemb SM-4	4 Vehicle Tracking Control (VT	' <u>C)</u>
SM-4	4 Vehicle Tracking Control (VT STABILIZED CONSTRUCTION ENTRANCE/EXIT INSTALLATION NOTES	<u>'C)</u>
SM-4	4 Vehicle Tracking Control (VT 4 Vehicle Tracking Control (VT STABILIZED CONSTRUCTION ENTRANCE/EXIT INSTALLATION NOTES 1. SEE PLAN VIEW FOR -LOCATION OF CONSTRUCTION ENTRANCE(S)/EXIT(S). -TYPE OF CONSTRUCTION ENTRANCE(S)/EXIT(S). -TYPE OF CONSTRUCTION ENTRANCE(S)/EXIT(S). -TYPE OF CONSTRUCTION ENTRANCE(S)/EXIT(S). CONSTRUCTION MAT OR TRM).	<u>'C)</u>
SM-4		<u>`C)</u>
SM-4		<u>'C)</u>
SM-4		<u>'C)</u>
SM-4		<u>`C)</u>
SM-4		<u>'C)</u>
SM-4		<u>'C)</u>
SM-4		`C)
SM-4	STABILIZED CONSTRUCTION ENTRANCE/EXIT INSTALLATION NOTES STABILIZED CONSTRUCTION ENTRANCE(S)/EXIT(S). UCCATION OF CONSTRUCTION ENTRANCE(S)/EXIT(S). UCCATION OF CONSTRUCTION ENTRANCE(S)/EXIT(S). UCCATION OF CONSTRUCTION ENTRANCE(S)/EXITS(S) (WITH/WITHOUT WHEEL WASH, CONSTRUCTION MAT OR TRM. STABILIZED CONSTRUCTION ENTRANCES ARE ONLY TO BE USED ON SHORT DURATION PROJECTS (TYPICALLY RANGING FROM A WEEK TO A MONTH) WHERE THERE WILL BE INITED VENUCLUAR ACCESS. A STABILIZED CONSTRUCTION ENTRANCE/EXIT SHALL BE LOCATED AT ALL ACCESS POINTS WHERE VEHICLES ACCESS THE CONSTRUCTION SITE FROM PAVED RIGHT-OF-WAYS. A STABILIZED CONSTRUCTION ENTRANCE/EXIT SHALL BE INSTALLED PRIOR TO ANY LAND DISTURBING ACTIVITIES. A NON-WOVEN GEOTEXTLE FABRIC SHALL BE PLACED UNDER THE STABILIZED CONSTRUCTION ENTRANCE/EXIT SHALL BE INSTALLED PRIOR TO ANY LAND DISTURBING ACTIVITIES. A NON-WOVEN GEOTEXTLE FABRIC SHALL BE PLACED UNDER THE STABILIZED CONSTRUCTION ENTRANCE/EXIT MAINTENANCE NOTES A NON-WOVEN GEOTEXTLE FABRIC SHALL BE PLACED UNDER THE STABILIZED CONSTRUCTION ENTRANCE/EXIT MAINTENANCE NOTES A NON-WOVEN GEOTEXTLE FABRIC SHALL BE PLACED UNDER THE STABILIZED CONSTRUCTION ENTRANCE/EXIT MAINTENANCE NOTES A LIOWED. I. INSPECT BUPS EXPLOID SEPECIFIED BY LOCAL JURISDICTION, ROCK SHALL CONSIST OF DOT SECT. #703, AASHTO #3 COARSE AGGREGATE OR 6" (MINUS) ROCK. RECYCLED CONCIDINT MAINTENANCE OF BMPS SHOULD BE PROACTIVE, NOT REACTIVE, INSPECT BMPS AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SUBFACE EROSION, AND PERFORM RECESSARY MAINTENANCE. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPS IN	`C)
SM-4		`C)
SM-4		'C)
SM-4		<u>'C)</u>
<u>SM-4</u>		<u>'C)</u>
SM-4		<u>'C)</u>
SM-4		<u>'C)</u>
SM-4		'C)
SM-4		<u>`C)</u>

EROSION AND SEDIMENT

CONTROL DETAILS

C2.03

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><text><text><text><text></text></text></text></text></section-header>	STATE STATE AND A STALE OF PROVIDENT AND THE PAGE OF CONTRIBUTION AND A STALE OF CO	<text><text><text><text><text><text></text></text></text></text></text></text>
SSA-4 Urban Drainage and Flood Control District November 2010	SSA-4 Urban Drainage and Flood Control District November 2010	SSA-4 Urban Drainage and Flood Control District November 2010	SSA-4 Urban Drainage and Flood Control District November 2010	SSA-4 Urban Drainage and Flood Control District November 2010	SSA-4 Uthan Drainage and Flood Control District	SX-4 Urban Drainage and Flood Control Dietrict
	Urban Storm Drainage Criteria Manual Volume 3	Urban Storm Drainage Criteria Manual Volume 3	Urban Storm Drainage Criteria Manual Volume 3	Urban Storm Drainage Criteria Manual Volume 3	Uthan Storm Drainage Criteria Manual Volume 3	Leban Storm Drainage Criteria Manual Volume 3 November 2010
SSA-4 Urban Drainage and Flood Control District November 2010	SSA-4 Urban Drainage and Flood Control District November 2010	SSA-4 Urban Drainage and Flood Control District November 2010	SSA-4 Urban Drainage and Flood Control District November 2010	SSA-4 Urban Drainage and Flood Control District November 2010	SSA-4 Urban Drainage and Flood Control District November 2010	SS.4 Urban Dreinage and Flood Control District November 2010
	Urban Storm Drainage Criteria Manual Volume 3	Urban Storm Drainage Criteria Manual Volume 3	Urban Storm Drainage Criteria Manual Volume 3	Urban Storm Drainage Criteria Manual Volume 3	Urban Storm Drainage Criteria Manual Volume 3	Urban Storm Drainage Criteria Manual Volume 3
Urban Storm Drainage Criteria Manual Volume 3						

PDP & REZONING SUBMITTAL
EROSION AND SEDIMENT
CONTROL DETAILS

ENGINEERS SURVEYORS

THE DESIGNS AND PLANS ARE COPYRIGHT AND ARE NOT TO BE USED OR REPRODUCED WHOLLY OR IN PART WITHOUT THE WRITTEN PERMISSION OF SSARCHITECTS. THE DRAWINGS AND SPECIFICATIONS ARE INSTRUMENTS OF SERVICE AND SHALL REMAIN THE PROPERTY OF THE ARCHITECT WHETHER THE PROJECT FOR WHICH THEY ARE MADE IS EXECUTED OR NOT. COPYRIGHT SSARCHITECTS. DO NOT SCALE FROM DRAWING. VERIFY ALL DIMENSIONS ON SITE.

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

(IP)	Inlet Protection (IP)SC-6
)	GENERAL INLET PROTECTION INSTALLATION NOTES
	-LOCATION OF INLET PROTECTION. -TYPE OF INLET PROTECTION (IP.1, IP.2, IP.3, IP.4, IP.5, IP.6) 2. INLET PROTECTION SHALL BE INSTALLED PROMPTLY AFTER INLET CONSTRUCTION OR PAYING
	IS COMPLETE (TYPICALLY WITHIN 48 HOURS). IF A RAINFALL/RUNOFF EVENT IS FORECAST, INSTALL INLET PROTECTION PRIOR TO ONSET OF EVENT. 3. MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS.
AIN MAX	CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.
	1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE
	EROSION, AND PERFORM NECESSARY MAINTENANCE. 2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE
	DOCUMENTED THOROUGHLY. 3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.
	4. SEDIMENT ACCUMULATED UPSTREAM OF INLET PROTECTION SHALL BE REMOVED AS NECESSARY TO MAINTAIN BMP EFFECTIVENESS, TYPICALLY WHEN STORAGE VOLUME REACHES 50% OF CAPACITY, A DEPTH OF 6" WHEN SILT FENCE IS USED, OR ¼ OF THE HEIGHT FOR
	STRAW BALES. 5. INLET PROTECTION IS TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS PERMANENTLY STABILIZED, UNLESS THE LOCAL JURISDICTION APPROVES EARLIER REMOVAL OF INLET PROTECTION IN STREETS.
	6. WHEN INLET PROTECTION AT AREA INLETS IS REMOVED, THE DISTURBED AREA SHALL BE COVERED WITH TOP SOIL, SEEDED AND MULCHED, OR OTHERWISE STABILIZED IN A MANNER APPROVED BY THE LOCAL JURISDICTION.
	(DETAIL ADAPTED FROM TOWN OF PARKER, COLORADO AND CITY OF AURORA, COLORADO, NOT AVAILABLE IN AUTOCAD) NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS.
	NOTE: THE DETAILS INCLUDED WITH THIS FACT SHEET SHOW COMMONLY USED, CONVENTIONAL
	METHODS OF INLET PROTECTION IN THE DENVER METROPOLITAN AREA. THERE ARE MANY PROPRIETARY INLET PROTECTION METHODS ON THE MARKET. UDFCD NEITHER ENDORSES NOR DISCOURAGES USE OF PROPRIETARY INLET PROTECTION; HOWEVER, IN THE EVENT PROPRIETARY METHODS ARE USED, THE APPROPRIATE DETAIL FROM THE MANUFACTURER MUST
	BE INCLUDED IN THE SWMP AND THE BMP MUST BE INSTALLED AND MAINTAINED AS SHOWN IN THE MANUFACTURER'S DETAILS. NOTE: SOME MUNICIPALITIES DISCOURAGE OR PROHIBIT THE USE OF STRAW BALES FOR INLET
	PROTECTION IS ACCEPTABLE.
2010	
/ / / / / /	November 2010 Orban Branage and Flood Control District
2010	Urban Storm Drainage Criteria Manual Volume 3
2010	Urban Storm Drainage Criteria Manual Volume 3
n (SB)	Urban Storm Drainage Criteria Manual Volume 3
n (SB)	Urban Storm Drainage Criteria Manual Volume 3 SC-7
n (SB)	Urban Storm Drainage Criteria Manual Volume 3 SC-7
n (SB) MAINTENANCE NOTES EACH WORKDAY, AND MAINT BMPR SHOULD BE PROACTAN	Irban Storm Drainage Criteria Manual Volume 3 SC-7 AIN THEM IN EFFECTIVE OPERATING CONDITION. T NOT DESCTIVE OPERATING CONDITION.
n (SB) MAINTENANCE NOTES EACH WORKDAY, AND MAINT BMPs SHOULD BE PROACTIV LWAYS WITHIN 24 HOURS) FO ERFORM NECESSARY MAINTEN	In Them in Effective operating condition. , NOT REACTIVE. INSPECT BMPs AS SOON AS SULOWING A STORM THAT CAUSES SURFACE NICE. E ARE RECEIVED TO MAINTAIN BIRDE IN
MAINTENANCE NOTES EACH WORKDAY, AND MAINT BMPs SHOULD BE PROACTIV LWAYS WITHIN 24 HOURS) FO RFORM NECESSARY MAINTEN ERVATIONS AND MAINTENANC ING CONDITION. INSPECTIONS ROUGHLY.	AIN THEM IN EFFECTIVE OPERATING CONDITION. 5. NOT REACTIVE INSPECT BMPs AS SOON AS DLOWING A STORM THAT CAUSES SURFACE NACE. E ARE NECESSARY TO MAINTAIN BMPs IN 1 AND CORRECTIVE MEASURES SHOULD BE PLACEMENT SHOULD BE INITIATED LIEDN
MAINTENANCE NOTES MAINTENANCE NOTES EACH WORKDAY, AND MAINT BMPs SHOULD BE PROACTIV WAYS WITHIN 24 HOURS) FA RFORM NOCESSARY MAINTENANC ING CONDITION. INSPECTIONS ROUGHLY. HAVE FAILED, REPAIR OR REI E FAILURE. JMULATED IN BASIN SHALL E PRICALLY WHEN SEDIMENT DE	SC-7 AIN THEM IN EFFECTIVE OPERATING CONDITION. , NOT REACTIVE. INSPECT BMPs AS SOON AS DLOWING A STORM THAT CAUSES SURFACE NACE. E ARE NECESSARY TO MAINTAIN BMPs IN ; AND CORRECTIVE MEASURES SHOULD BE *LACEMENT SHOULD BE INITIATED UPON IE REMOVED AS INEEDED TO MAINTAIN BMP TETH DERACTIVES ONE FOOT (IF THID EFET
MAINTENANCE NOTES EACH WORKDAY, AND MAINT BMPS SHOULD BE PROACTIV LWAYS WITHIN 24 HOURS) FA ERFORM NECESSARY MAINTEN SERVATIONS AND MAINTENANC TING CONDITION. INSPECTIONS PROUGHLY. HAVE FAILED, REPAIR OR REI IE FAILURE. UMULATED IN BASIN SHALL E YPICALLY WHEN SEDIMENT DE WAY CREST). INS ARE TO REMAIN IN PLAC	AIN THEM IN EFFECTIVE OPERATING CONDITION. E, NOT REACTIVE, INSPECT BMPB AS SOON AS SLOWING A STORM THAT CAUSES SURFACE NICE. E ARE NECESSARY TO MAINTAIN BMPB IN ; AND CORRECTIVE MEASURES SHOULD BE PLACEMENT SHOULD BE INITIATED UPON HE REMOVED AS NEEDED TO MAINTAIN BMP PTH REACHES ONE FOOT (I.E., TWO FEET E UNTIL THE UPSTREAM DISTURBED AREA D BY THE LOCAL INFORMATION
MAINTENANCE NOTES MAINTENANCE NOTES S EACH WORKDAY, AND MAINT BMPs SHOULD BE PROACTIV ALWAYS WITHIN 24 HOURS) FA ERFORM NECESSARY MAINTEN SERVATIONS AND MAINTENANC AUMOUNT NOT A HOURS OF SERVATIONS AND MAINTENANC SERVATIONS AND	AIN THEM IN EFFECTIVE OPERATING CONDITION. E, NOT REACTIVE. INSPECT BMPs AS SOON AS DLOWING A STORM THAT CAUSES SURFACE ANCE. E ARE NECESSARY TO MAINTAIN BMPs IN ; AND CORRECTIVE MEASURES SHOULD BE PLACEMENT SHOULD BE INITIATED UPON HE REMOVED AS NEEDED TO MAINTAIN BMP FITH REACHES ONE FOOT (I.E., TWO FEET E UNTIL THE UPSTREAM DISTURED AREA D BY THE LOCAL JURISDICTION. L DISTURBED AREAS SHALL BE COVERED IERWISE STABILIZED AS APPROVED BY
MAINTENANCE NOTES MAINTENANCE NOTES EACH WORKDAY, AND MAINT BMPs SHOULD BE PROACTIV LWAYS WITHIN 24 HOURS) FI ERFORM NECESSARY MAINTENANCE TING CONDITION. INSPECTIONS ROUGHLY. HAVE FAILED, REPAIR OR REI IE FAILURE. UMULATED IN BASIN SHALL E YPICALLY WHEN SEDIMENT DE WAY CREST). INS ARE TO REMAIN IN PLAC D GRASS COVER IS ACCEPTE AT BASINS ARE REMOVED, AL EEDED AND MULCHED OR OTHON. M DOUGLAS COUNTY, COLORADO) SDICTIONS HAVE BMP DETAILS	AIN THEM IN EFFECTIVE OPERATING CONDITION. E, NOT REACTIVE, INSPECT BMPB AS SOON AS SULDWING A STORM THAT CAUSES SURFACE ANCE. E ARE RECESSARY TO MAINTAIN BMPB IN S AND CORRECTIVE MEASURES SHOULD BE PLACEMENT SHOULD BE INITIATED UPON IE REMOVED AS NEEDED TO MAINTAIN BMP PTH REACHES ONE FOOT (I.E., TWO FEET E UNTIL THE UPSTREAM DISTURBED AREA D BY THE LOCAL JURISDICTION. L DISTURBED AREAS SHALL BE COVERED IERWISE STABILIZED AS APPROVED BY S THAT VARY FROM UDFCD STANDARD DETAILS.
MAINTENANCE NOTES MAINTENANCE NOTES EACH WORKDAY, AND MAINT BMPs SHOULD BE PROACTIV ALWAYS WITHIN 24 HOURS) FA ERFORM NECESSARY MAINTEN SERVATIONS AND MAINTENANC TING CONDITION. INSPECTIONS DROUGHLY. HAVE FAILED, REPAIR OR REI HE FAILURE. CUMULATED IN BASIN SHALL E YPICALLY WHEN SEDIMENT DE WAY CREST). SINS ARE TO REMAIN IN PLAC D GRASS COVER IS ACCEPTE INT BASINS ARE REMOVED, AL EEDED AND MULCHED OR OTH ON. M DOUGLAS COUNTY, COLORADO) ISDICTIONS HAVE BMP DETAILS DCAL JURISDICTIONS AS TO WE IN NOTED.	INT THEM IN EFFECTIVE OPERATING CONDITION. E, NOT REACTIVE. INSPECT BMPB AS SOON AS SULOWING A STORM THAT CAUSES SURFACE AVCE. E ARE NECESSARY TO MAINTAIN BMPB IN ? AND CORRECTIVE MEASURES SHOULD BE PLACEMENT SHOULD BE INITIATED UPON HE REMOVED AS NEEDED TO MAINTAIN BMP PTHT REACHES ONE FOOT (I.E., TWO FEET E UNTIL THE UPSTREAM DISTURBED AREA D BY THE LOCAL JURISDICTION. L DISTURBED AREAS SHALL BE COVERED HERMISE STABILIZED AS APPROVED BY S THAT VARY FROM UDFCD STANDARD DETAILS. HIGH DETAIL SHOULD BE USED WHEN
MAINTENANCE NOTES MAINTENANCE NOTES A EACH WORKDAY, AND MAINT BMPs SHOULD BE PROACTIV ALWAYS WITHIN 24 HOURS) FA ERFORM NECESSARY MAINTEN SERVATIONS AND MAINTENANC TING CONDITION. INSPECTIONS DROUGHLY. HAVE FAILED, REPAIR OR REI HE FAILURE. SUMULATED IN BASIN SHALL E YPICALLY WHEN SEDIMENT DE WAY CREST). SINS ARE TO REMAIN IN PLAC D GRASS COVER IS ACCEPTE NT BASINS ARE REMOVED, AL EEDED AND MULCHED OR OTH ON. M DOUGLAS COUNTY, COLORADO) ISDICTIONS HAVE BMP DETAILS DCAL JURISDICTIONS AS TO WE NOTED.	In them in effective operating condition. E, not refactive inspect buys as soon as SJUOWING a Storm That Causes surrace and: a not corrective measures should be PLACEMENT SHOULD BE INITIATED UPON HE REMOVED AS NEEDED TO MAINTAIN BMP FTH REACHES ONE FOOT (I.E., TWO FEET E UNTL THE UPSTREAM DISTURBED AREA D BY THE LOOK JURGISCHON. L DISTURBED AREAS SHALL BE COVERED HERMISE STABILIZED AS APPROVED BY IS THAT VARY FROM UDFD STANDARD DETAILS. HICH DETAIL SHOULD BE USED WHEN
MAINTENANCE NOTES MAINTENANCE NOTES EACH WORKDAY, AND MAINT BMPS SHOULD BE PROACTIV LWAYS WITHIN 24 HOURS) FA ERFORM NECESSARY MAINTEN SERVATIONS AND MAINTENANC TING CONDITION. INSPECTIONS OROUGHLY. HAVE FAILED, REPAIR OR REL IE FAILURE. UMULATED IN BASIN SHALL E YPICALLY WHEN SEDIMENT DE WAY CREST). INS ARE TO REMAIN IN PLAC D GRASS COVER IS ACCEPTE IT BASINS ARE REMOVED, AL EEDED AND MULCHED OR OTH ON. M DOUGLAS COUNTY, COLORADO) SDICTIONS HAVE BMP DETAILS DCAL JURISDICTIONS AS TO W I NOTED.	AN THEM IN EFFECTIVE OPERATING CONDITION. E. NOT REACTIVE INSPECT EMPS AS SOON AS DURANG A STORM THAT CAUBES SURFACE NOCE. E ARE INCESSARY TO MAINTAIN BMPB IN S AND CORRECTIVE MEASURES SHOULD BE PLACEMENT SHOULD BE INITIATED UPON HE REMOVED AS NEEDED TO MAINTAIN BMP PTH REACHES ONE FOOT (LE., TWO FEET E UNTL THE UPSTREAM DISTURBED AREA D BY THE LOCAL JURISDICTION. L DISTURBED AREAS SHALL BE COVERED STHAT VARY FROM UDFCD STANDARD DETAILS. HICH DETAIL SHOULD BE USED WHEN
MAINTENANCE_NOTES MAINTENANCE_NOTES EACH WORKDAY, AND MAINT BMPs SHOULD BE PROACTIV ALWAYS WITHIN 24 HOURS) FA ERFORM NECESSARY MAINTEN SERVATIONS AND MAINTENANC TING CONDITION. INSPECTIONS DROUGHLY. HAVE FAILED, REPAIR OR REL 1E FAILURE. EUMULATED IN BASIN SHALL E YPICALLY WHEN SEDIMENT DE WAY CREST). SINS ARE TO REMAIN IN PLACE D GRASS COVER IS ACCEPTE NT BASINS ARE REMOVED, AL EEDED AND MULCHED OR OTHON. M DOUGLAS COUNTY, COLORADO) ISDICTIONS HAVE BMP DETAILS DCAL JURISDICTIONS AS TO WE NOTED.	AIN THEM IN EFFECTIVE OPERATING CONDITION. E, NOT REACTIVE OPERATING CONDITION. E, NOT REACTIVE INSPECT BMFS AS SOON AS JUCOWING A STORM THAT CAUSES SURFACE NACE. E ARE NECOSSARY TO MAINTAIN BMPS IN 3 AND CORRECTVE MEASURES SHOULD BE PLACEMENT SHOULD BE INITIATED UPON HE REMOVED AS NEEDED TO MAINTAIN BMP PTH REACHES ONE FOOT (LE., TWO FEET E UNTIL THE UPSTREAM DISTURBED AREA 0 BY THE LOCAL JURSDICTION. L DISTURBED AREAS SHALL BE COVERED HERWISE STABILIZED AS APPROVED BY 3 THAT WARY FROM UDFCD STANDARD DETAILS. HICH DETAIL SHOULD BE USED WHEN
MAINTENANCE_NOTES MAINTENANCE_NOTES EACH WORKDAY, AND MAINT BMPs SHOULD BE PROACTIV ALWAYS WITHIN 24 HOURS) FI ERFORM NECESSARY MAINTEN SERVATIONS AND MAINTENANC TING CONDITION. INSPECTIONS DROUGHLY. HAVE FAILED, REPAIR OR REI TE FAILURE. CUMULATED IN BASIN SHALL E YPICALLY WHEN SEDIMENT DE WAY CREST). SINS ARE TO REMAIN IN PLAC D GRASS COVER IS ACCEPTE INT BASINS ARE REMOVED, AL EEDED AND MULCHED OR OTH ON. M DOUGLAS COUNTY, COLORADD) ISDICTIONS HAVE BMP DETAILS DCAL JURISDICTIONS AS TO WE NOTED.	ARN THEM IN EFFECTIVE OPERATING, CONDITION. E, NOT REACTIVE, INFECT BARE AS SOON AS SLUDWING A STORM THAT CAUSES SURFACE NACE. E ARE NECESSARY TO MAINTAIN BMPS IN F AND CORRECTIVE MEASURES SHOULD BE SUCCEMENT SHOULD BE INITIATED UPON HE REMOVED AS NEEDED TO MAINTAIN BMP FTH REACHES ONE FOOT (I.E., TWO FEET E UNTIL THE UPSTREAM DISTURBED AREA D ST THE LOCAL JUNSDOCTOM. L DISTURBED AREAS SHALL BE COVERED HERWISE STABILIZED AS APPROVED BY S THAT VARY FROM UDFOD STANDARD DETAILS. HICH DETAIL SHOULD BE USED WHEN
MAINTENANCE NOTES MAINTENANCE NOTES SEACH WORKDAY, AND MAINT BMPS SHOULD BE PROACTIV ALWAYS WITHIN 24 HOURS) FI ERFORM NECESSARY MAINTEN SERVATIONS AND MAINTENANC ALWAYS WITHIN 24 HOURS) FI ERFORM NECESSARY MAINTEN SSERVATIONS AND MAINTENANC ALWAY CONDITION. INSPECTIONS DROUGHLY. HAVE FAILED, REPAIR OR REI HE FAILURE. CUMULATED IN BASIN SHALL E TYPICALLY WHEN SEDIMENT DE JWAY CREST). SINS ARE TO REMAIN IN PLAC ID GRASS COVER IS ACCEPTE ID GRASS COVER IS ACCEPTE NT BASINS ARE REMOVED, AL EEDED AND MULCHED OR OTH ION. M DOUGLAS COUNTY, COLORADO) ISDICTIONS HAVE BMP DETAILS OCAL JURISDICTIONS AS TO WE NOTED.	AIN THOM IN EFFECTIVE OPERATING CONDITION. E. NOT REACTIVE. INSPECT BMPB AS SOON AS SLIGWING A STORM THAT CAUSES SUFFACE AND CORRECTIVE INSPECT DWPB AS SOON AS SLIGWING A STORM THAT CAUSES SUFFACE AND CORRECTIVE MEASURES SHOULD BE PLACEMENT SHOULD BE INITIATED UPON HE REMOVED AS NEEDED TO MAINTAIN BMP IF LOCAL JURESDRITORED AREA D BY THE LOCAL JURESDRITORED I BY THE LOCAL JURESDRITORED AREA D BY THE LOCAL JURESDRITOR AREA D BY THE D B
MAINTENANCE NOTES MAINTENANCE NOTES SEACH WORKDAY, AND MAINT BMPS SHOULD BE PROACTIV ALWAYS WITHIN 24 HOURS) FI ERFORM NECESSARY MAINTEN SERVATIONS AND MAINTENANC ALWAYS WITHIN 24 HOURS) FI ERFORM NECESSARY MAINTEN SSERVATIONS AND MAINTENANC ALWAY CONDITION. INSPECTIONS DROUGHLY. HAVE FAILED, REPAIR OR REI HE FAILURE. CUMULATED IN BASIN SHALL E TYPICALLY WHEN SEDIMENT DE JWAY CREST). SINS ARE TO REMAIN IN PLAC ID GRASS COVER IS ACCEPTE INT BASINS ARE REMOVED, AL EEDED AND MULCHED OR OTH ION. M DOUGLAS COUNTY, COLORADO) ISDICTIONS HAVE BMP DETAILS OCAL JURISDICTIONS AS TO WE NOTED.	AN THEM IN EFFECTIVE OPERATING CONDITION E, NOT REACTIVE. INSPECT BUTS AS SIGON AS DUCINING A STORM THAT CUESS SUFFACE NAME. # ACE NECESSARY TO MAINTAIN BUPS IN 1 AND CORRECTIVE MEASURES SHOULD BE PACEMENT SHOULD BE INITIATED UPON HE REMOVED AS NEEDED TO MAINTAIN BUP FITH REACHES ONE FOOT (I.E., TWO FEET E PARTING AREAS SHALL BE COVERD D BY THE LOCAL JURISDICTION. L INSTUMED AREAS SHALL BE COVERD D BY THE LOCAL JURISDICTION. JURISDICTION. S THAT VARY FROM UDFED STANDARD DETAILS.
MAINTENANCE NOTES MAINTENANCE NOTES SEACH WORKDAY, AND MAINT BMPS SHOULD BE PROACTIV ALWAYS WITHIN 24 HOURS) FI ERFORM NECESSARY MAINTEN SERVATIONS AND MAINTENANC ATMAG CONDITION. INSPECTIONS DROUGHLY. HAVE FAILED, REPAIR OR REI HE FAILURE. CUMULATED IN BASIN SHALL E TYPICALLY WHEN SEDIMENT DE UWAY CREST). SINS ARE TO REMAIN IN PLAC ID GRASS COVER IS ACCEPTE NT BASINS ARE REMOVED, AL EEDED AND MULCHED OR OTH ION. M DOUGLAS COUNTY, COLORADO) ISDICTIONS HAVE BMP DETAILS OCAL JURISDICTIONS AS TO WE NOTED.	INTHEM IN EFFECTIVE OPERATING CONDITION, E, VOT REACTIVE. INSPECT BMFR AS SOON AS SUCCIMENT ASTRONG THAT CAUSES SUFFACE AME: I AND CORRECTIVE MEDIANES SHOULD BE FACE INCOSESSAY TO MANITAIN BMF9 IN A MOC CORRECTIVE MEDIANES SHOULD BE FACE INCOSESSAY TO MANITAIN BMF9 IN A MOC CORRECTIVE MEDIANES SHOULD BE FACE INCOSESSAY TO MANITAIN BMF9 IN A MOC CORRECTIVE MEDIANES SHOULD BE FUNCTIONED AS INCOME TO MINITAIN BMF9 IN THE LOCAL JURSSICTION. LI DISTURDED AREAS SHALL CE COVERED FROM DETAIL SHOULD BE USED WHEN
MAINTENANCE NOTES MAINTENANCE NOTES SEACH WORKDAY, AND MAINT BMPs SHOULD BE PROACTIV ALWAYS WITHIN 24 HOURS) FA ERFORM NECESSARY MAINTEN ISERVATIONS AND MAINTENANC TING CONDITION. INSPECTIONS OROUGHLY. HAVE FAILED, REPAIR OR REI PYPICALLY WHEN SEDIMENT DE UMULATED IN BASIN SHALL E TYPICALLY WHEN SEDIMENT DE UMULATED IN BASINS ARE REMOVED, AL EEDED AND MULCHED OR OTH ION. DM DOUGLAS COUNTY, COLORADO) ISDICTIONS HAVE BMP DETAILS OCAL JURISDICTIONS AS TO WE INOTED.	AIN THEM IN EFFECTIVE OPERATING CONDITION. IS NOT RECEIVE. IN EFFECTIVE OPERATING CONDITION. IS NOT RECEIVE. INSPECT MER AS SOON AS ACC. E ARE INSPECTIVE OPERATING CONDITION. IS AND CORRECTIVE MERAURES SHOULD BE PAGENERT SHOULD EE INITIATED UPON IF RECORDS OPERATING TO U.C., TWO FEET E UNTL THE UCON. JURISDICTION. I DISTINGED AREA SHOULD GE COVERED IERWISE STABILIZED AS APPROVED BY IERWISE STABILIZED AS APPROVED BY IERWISE STABILIZED AS APPROVED BY IS THAT VARY FROM UDFOD STANDARD DETAILS.
MAINTENANCE NOTES MAINTENANCE NOTES A EACH WORKDAY, AND MAINT BMPS SHOULD BE PROACTIV ALWAYS WITHIN 24 HOURS) FR ERFORM NECESSARY MAINTENANC TING CONDITION. INSPECTIONS DROUGHLY. HAVE FAILED, REPAIR OR REI TYPICALLY WHEN SEDIMENT DE UMULATED IN BASIN SHALL E TYPICALLY WHEN SEDIMENT DE UMULATED IN BASIN SHALL E TYPICALLY WHEN SEDIMENT DE UMULATED IN BASIN SHALL E TYPICALLY WHEN SEDIMENT DE MAY CREST). SINS ARE TO REMAIN IN PLAC ID GRASS COVER IS ACCEPTE NT BASINS ARE REMOVED, AL EEDED AND MULCHED OR OTH ION. M DOUGLAS COUNTY, COLORADO) ISDICTIONS HAVE BMP DETAILS OCAL JURISDICTIONS AS TO WE E NOTED.	ANI THEU NI OFFECTIVE OPERATING CONDITION. E. NOT REACTIVE INSPECT BARS AS SOON AS SULCANNO A STORM THAT CAUSES SURFACE ANCE: IF ARE INSECTIONE INSPECTIONS AS AN AND A STORM THAT CAUSES SURFACE ANCE: PARCEDESSARTY TO MAINTAIN BARS IF ARE INSECTION A STORM THAT CAUSES SURFACE AND CORRECTOR UNKLOSH BE PARCEMENT SHOULD BE INITIATED UPON IF THE LOCAL UNRESCHICUS. UNCLUBESCHICUS. UNCLUBESCHICUS. INTER STABLIZED AS APPROACED BY I THAT VARY FROM UNFED STARBARD DETAILS. INCP: DETAIL SHOULD BE USED WHEN
MAINTENANCE NOTES MAINTENANCE NOTES SEACH WORKDAY, AND MAINT BMPS SHOULD BE PROACTIV ALWAYS WITHIN 24 HOURS) FI ERFORM NECESSARY MAINTEN SERVATIONS AND MAINTENANC ATING CONDITION. INSPECTIONS OROUGHLY. HAVE FAILED, REPAIR OR REI HE FAILURE. CUMULATED IN BASIN SHALL E TYPICALLY WHEN SEDIMENT DE WAY CREST). SINS ARE TO REMAIN IN PLAC ID GRASS COVER IS ACCEPTE NT BASINS ARE REMOVED, AL EEDED AND MULCHED OR OTHON. M DOUGLAS COUNTY, COLORADO) ISDICTIONS HAVE BMP DETAILS OCAL JURISDICTIONS AS TO WE NOTED.	AN THEM IN EFFECTIVE OPERATING CONDITION. IN THEM IN EFFECTIVE OPERATING CONDITION. IN OTHER PROPERTY IN THIS CAUGES SUBJECT AND CORRECTIVE INFORMATION BUR PROCEMENT SHOULD BE INITIATED UPON IF REMOVED AS NEEDED TO MAITTAIN BUR PROCEMENT SHOULD BE INITIATED UPON IF REMOVED AS NEEDED TO MAITTAIN BUR PROCEMENT SHOULD BE INITIATED UPON IF REMOVED AS NEEDED TO MAITTAIN BUR PROCEMENT SHOULD BE INITIATED UPON IF REMOVED AS NEEDED TO MAITTAIN BUR PROCEMENT SHOULD BE INITIATED UPON IF REMOVED AS NEEDED TO MAITTAIN BUR PROCEMENT SHOULD BE USED WHEN STATUS STATUS SHOULD STATUS SHOULD SHOULD BE USED WHEN STATUS STATUS SHOULD STATUS SHOULD SHOULD BE USED WHEN STATUS STATUS SHOULD STATUS SHOULD S

EROSION AND SEDIMENT

CONTROL DETAILS

C2.05

LANDSCAPE PLANT LIST

	DECIDUC	OUS SHADE TREES							
	SYMBOL	COMMON NAME	BOT ANICAL NAME	1	MAT URE	MAT URE	WATER USE	SUN/SHADE	SIZE AND
	WEH	Western Hackberry	Celtis occidentalis	1	50-60'	40-50'	Low	Sun	2" Cal., B&
	PSG	Princeton Sentry Ginkgo	Ginkgo biloba 'Princeton Sentry'	1	35-40'	12-15'	Medium	Sun	2" Cal., B&
	SKL	Skyline Honeylocust	Gleditsia triacanthos inermis 'Skylin	e'	40'	30'	Low	Sun	2" Cal., B&
	KYC	Kentucky Coffeetree	Gymnocladus dioicus		50-60'	40-50'	Low	Sun	2" Cal., B&
	BUO	Bur Oak	Quercus macrocarpa		50-80'	50-80'	Low	Sun	2" Cal., B&
	СНО	Chinquapin Oak	Quercus muehlenbergii		35-50'	35-50'	Low	Sun	2" Cal., B8
	ORNAME	ENTAL TREES				MATURE	WATED		
	SYMBOL	COMMON NAME	BOT ANICAL NAME		HEIGHT	SPREAD	USE	SUN/SHADE	
	SHS	Shadblow Serviceberry	Amelanchier canadensis		15-25'	15-25'	Low	Sun	1-1/2" Cal., I
	EAR	Eastern Redbud	Cercis canadensis		20-30'	20-30'	Medium	Shade / Part Shade	1-1/2" Cal.,
	TCH	Thornless Cockspur Hawthorn	Crataegus crus-galli inermis		15-25'	15-20'	Low	Sun	1-1/2" Cal.,
	PSG	Princeton Sentry Ginkgo	Ginkgo biloba 'Princeton Sentry'		35-40'	12-15'	Medium	Sun	1-1/2" Cal.,
	SSF	Seven-son Flower	Heptacodium miconioides		18'	12'	Medium	Sun / Part Shade	1-1/2" Cal.,
	CSO	Crimson Spire Oak	Quercus robur x alba 'Crimschmid	ť	45'	14'	Medium	Sun	1-1/2" Cal.,
	JTL	Japanese Tree Lilac	Syringa reticulata		15-25'	15-20'	Low	Sun / Part Shade	1-1/2" Cal.,
	CCG	Clear Creek Golden Yellowhorn	Xanthoœras sorbifolium 'Pagan'		18-22'	10-15'	Low	Sun	1-1/2" Cal.,
٩,	EVERGR	EEN TREES							
$\frac{1}{3}$	SYMBOL	COMMON NAME	BOT ANICAL NAME		MATURE	MATURE	WATER	SUN/SHADE	SIZE AN
م کر	RMI	Rocky Mountain Juniner	Juninerus sconulorum	-	20-30'	8-12'	Very Low	Sun	6' ht B&
	ENS	Fastigate Nonway Spruce	Dices shies 'Curressins'		15-20'	4-6'	Medium	Sun	6' bt B&
	WMAS	Weening White Spruce	Pices algues 'Dendula'		15-25	5.8'	Medium	Sun	6' bt D0
	HIS	Hoonsii Spruce			25	12'	Medium	Adaptable	6'ht B
	BRP	Bristemne Pine	Pinue arietata		20-40'	10-20'	Low	Sun / Part Shade	6'ht Be
	VPP	Vanderwolfe Pyramid Dine	Pinue levile Vanderuolfo Duromi	ł.	30-50	15-30'	Low	Sun / Part Shade	6' bt Be
	ALIS	Austrian Pine			40-60	30-40	Low	Sun	6' bt B
	KCA	Komet Columnar Austrian Pine	Pinus nigra 'Komet'		15-20'	4-5'	Low	Sun	6' ht, B8
	DECIDUC	OUS SHRUBS							
$\overline{}$	SYMBOL	COMMON NAME	BOTANICAL NAME	1	MATURE	MATURE	WATER	SUN/SHADE	SIZE AN
9	BLO				HEIGHT	SPREAD	USE	Adaptable	CONDITI
	BLC	Black Chokeberry	Aronia melanocarpa elata		5-8	4-6	Low	Adaptable	5 Gallon C
	OCJ	Orange Columnar Japanese Barberry	Berberis munbergii Orange Rocke	t	4-5	18-24	Low	Sun / Part Shade	5 Gallon C
	LMM	Littleleat Mountain Mahogany	Cercocarpus intricatus		6-8	4-6	Very Low	Sun / Part Shade	5 Gallon C
	AFD	Arctic Fire Dogwood	Cornus sericea Arctic Fire		3-4	3-4'	Medium	Adaptable	5 Gallon C
	PCE	Peking Cotoneaster	Cotoneaster lucidus		6-12'	6-10'	Low	Sun / Part Shade	5 Gallon C
	CMD	Carol Mackie Daphne	Daphne x burkwoodii 'Carol Macki	e'	3-5'	3-5'	Medium	Part Shade / Shade	5 Gallon C
	PPR	PURPLE PILLAR® Rose of Sharon	Hibiscus syriacus 'Purple Pillar'		10-16'	4-5'	Medium	Sun	5 Gallon C
	LOP	Lodense Privet	Ligustrum vulgare 'Lodense'		2-3'	3-4'	Low	Sun / Part Shade	5 Gallon C
	SWN	Summer Wine Ninebark	Physocarpus opulifolius 'Summer Wi	ne'	4-6'	4-6'	Low	Sun / Part Shade	5 Gallon C
	CTS	Creeping Three-Leaf Sumac	Rhus trilobata 'Autumn Amber'		12-18"	6-8'	Very Low	Sun	5 Gallon C
	GMC	Green Mound Currant	Ribes alpinum 'Green Mound'		3-4'	2-3'	Low	Sun / Part Shade	5 Gallon C
	CCC	Crandall Clove Currant	Ribes odoratum 'Crandall'	_	3-5'	4-6'	Low	Sun / Part Shade	5 Gallon C
	DIE	Black Tower Elderberry	Sambucus higra Eliter 1 PP23,03.	5	0-0	3-4	Madium	Sun Oue / Ded Chada	5 Gallon C
	LIVIS	Limemound Spirea	Spiraea japonica Limemound		10-24	2-3	weatum	Sun / Part Shade	5 Gallon C
	VVSB	vvestern Snowberry	Symphonicarpos occidentalis		3-0	3-0	Low	Sun / Part Shade	5 Gallon C
	PRL		Syringa x Bioomerang		4-5	4-5	Low	Sun	5 Gallon C
	DEC	Dwart European Cranberry bush	Viburnum opulus 'Nanum'	u	1-2	1-2	Medium	Adaptable	5 Gallon C
	EVEDOD		viburnum vilobum Bailey Compac	a	4-0	4-0	wealum	Adaptable	5 Galion C
	EVERGR	EEN SHRUBS			MATLIDE	MATURE	WATED		
\oplus	SYMBOL	COMMON NAME	BOT ANICAL NAME		HEIGHT	SPREAD	USE	SUN/SHADE	CONDITI
Ċ	IBI	Icee Blue Juniper	luninerus horizontalis Icee Blue	-	2-4"	6-8'	Low	Sup	5 Gallon C
	COL	Coloareen Junioor		,	15.20	4.6'	Very Low	Sun	5 Gallon C
	OGH	Oregon Grane Holly	Mahonia aquifolium		4-6'	4-6'	Low	Shade	5 Gallon C
	COG	Compact Oregon Grane Holly	Mahonia aquifolium compacta		2-3'	2-3'	Low	Shade	5 Gallon C
	DGG	Dwarf Globe Green Spruce	Pices nuncers 'Roundshout		2.3'	2.3'	Medium	Adaptable	5 Gallon C
	BTM	Big Tuna Mugo Pine	Pinus mugo 'Big Tupe'		6-8'	5-6'	Low	Sun	5 Gallon C
	AND	Adam's Needle Yucca	Yucca filamentosa		2-3'	3-4'	Low	Sun	5 Gallon C
	ORNAME	ENTAL GRASSES							
	SYMBOL	COMMON NAME	BOTANICAL NAME		MATURE	MATURE	WATER	SUN/SHADE	SIZE AN
	000				HEIGHT	SPREAD	USE		CONDITI
	SGG	Sideoats Grama Grass	Bouteloua curtipendula		8-24"	8-12"	Low	Sun	1 Gallon C
	BAM	Blonde Ambition Grama Grass	Bouteloua gracilis 'Blonde Ambition	1 [°]	2-3	1-2'	Very Low	Sun	1 Gallon C
	FRG	Feather Reed Grass	Calamagrosts acutifora 'Karl Foers	er	4-5'	18-24"	Low	Sun / Part Shade	1 Gallon C
	NUK	Norean Feather Reed Grass	Calamagrosts brachytricha		3-4	2-3	LOW	Adaptable	I Gallon C
	DEG	Dwart Fountain Grass	Pennisetum alopecuroides 'Hameli	T	1-2	18-24"	LOW	Sun	T Gallon Co
	PLG	Flume Grass	Saccharum ravennae		0-12	3-4	wedium	Sun	5 Gallon Co
	GSG	Giant Sacaton Grass	Sonizacriy rium scoparium 1 he Blue Sporobolus wrighti	5	3-4	3-5'	Low	Sun	5 Gallon Co
	PERENN	NIAL S	an a						
•	SYMBOL	COMMONNAME	BOTANICAL NAME	MATUR		JRE WAT	rer se	SUN/SHADE	SIZE AND
	MOY	Moonshine Varran	Ashillos Massahira I	04.00		-no 03		Cum	
	MOY	woonsnine Yarrow	Achiliea Moonshine	24-30"	18-2	.4 L0	W	Sun	i Gallon Co
	COH	Coronado Hyssop	Agastache aurantiaca Coronado	15-18"	12-1	5" Lo	w S	un / Part Shade	1 Gallon Co
	SMS	Silver Mound Sage	Artemisia schmidtiana	12-18"	18-2	'4" Lo	w	Sun	1 Gallon Co
	PBO	Plumbago	Ceratostigma plumbaginoides	8-12"	2-3	3' Lo	w	Adaptable	1 Gallon Co
		Orange Carpet California Euchsia	Epilobium canum garrettii Orange Carpet	4-6"	15-2	20" Lo	w	Sun	1 Gallon Co
	000	orange ou per camernar achoa							
	OCC BLF	Native Blanket Flower	Gaillardia aristata	18-24"	18-2	?4" Lo	w	Sun	1 Gallon Co
	OCC BLF CRD	Native Blanket Flower Cranberry Red Davlily	Gaillardia aristata Hemerocallis 'Pardon Me'	18-24"	18-2	24" Lo	w	Sun	1 Gallon Co

90 / 10 Fescue/Bluegrass Mix

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

MAIKER BOYERS

RAIN GARDEN PLANTINGS

SYMBOL	COMMON NAME	BOT ANICAL NAME	MATURE HEIGHT	MATURE SPREAD	WAT ER USE	SUN/SHADE	SIZE AND CONDITION
CWY	Common White Yarrow	Achillea millefolium	1-2'	2-3'	Low	Sun	1 Gallon Cont
IRG	Indian Rice Grass	Achnatherum hymenoides	15-18"	12-18"	Low	Sun	1 Gallon Cont
DGC	Denver Gold Columbine	Aquilegia chrysantha	28"-32"	16-18"	Low	Sun / Part Shade	1 Gallon Cont
BUW	Butterfly Weed	Asclepias tuberosa	18-36"	18-24"	Low	Sun	1 Gallon Cont
PWC	Prairie Winecups	Callirhoe involucrata	6-12"	2-3'	Low	Sun	1 Gallon Cont
BHB	Blue Harebell	Campanula rotundifolia 'Olympica'	6-18"	12-18"	Low	Sun / Part Shade	1 Gallon Cont
MBC	Moonbeam Coreopsis	Coreopsis verticillata 'Moonbeam'	18-24"	18-24"	Low	Sun	1 Gallon Cont
PPC	Purple Prairie Clover	Dalea purpurea	2-3'	1-2'	Low	Sun	1 Gallon Cont
PCF	Purple Coneflower	Echinacea purpurea	2-3'	18-24"	Low	Sun	1 Gallon Cont
SFB	Showy Fleabane	Erigeron speciosus	18-24"	18-24"	Low	Sun	1 Gallon Cont
SBF	Siskiyou Blue Idaho Fescue	Festuca idahoensis 'Siskiyou Blue'	15-18"	12-15"	Medium	Sun	1 Gallon Cont
JNG	June Grass	Koeleria macrantha	18-24"	12-18"	Low	Sun / Part Shade	1 Gallon Cont
NLB	Native Lavender Bee-Balm	Monarda fistulosa menthifolia	2-3'	18-24"	Low	Sun	1 Gallon Cont
SRS	Shenandoah Red Switch Grass	Panicum virgatum 'Shenandoah'	3-4'	12-18"	Low	Sun	1 Gallon Cont
DEP	Desert beardtongue	Penstemon pseudospectabilis	30"	15"	Low	Sun	1 Gallon Cont
RIG	Ribbon Grass	Phalaris arundinacea 'Picta'	2-3'	18-24"	Medium	Adaptable	1 Gallon Cont
PRC	Prairie Red Coneflower	Ratibida columnifera pulcherrima	18-24"	18-24"	Very Low	Sun	1 Gallon Cont
BES	Black Eyed Susan	Rudbeckia fulgida 'Goldsturm'	18-24"	18-24"	Low	Sun	1 Gallon Cont
GBG	Golden Baby Goldenrod	Solidago 'Golden Baby'	1-3'	18-24"	Low	Sun / Part Shade	1 Gallon Cont
ING	Indian Grass	Sorghastrum nutans	3-5'	3-4'	Low	Sun	1 Gallon Cont

PLANTING DETAIL FOR ALL TREES & B&B SHRUBS

Α DO NOT CUT LEADER PRUNE IMMEDIATELY PRIOR TO PLANTING M M. A. TAT \wedge τ₩

AND LA	USE NYLON TREE STRAPS AT END OF WIRE (EVERGREEN TREES ONLY)
	24" LENGTH BY 3/4 DIA. P.V.C. MARKERS (TYP.) OVER WIRES
	- 12 GAUGE GALVANIZED WIRE
	USE 3 GUY ASSEMBLIES FOR EVERGREENS, AND TREES OVER 3" CALIPER
	24" LENGTH BY 3/4 DIA. P.V.C. MARKERS (TYP.) OVER WIRES
	3" DEPTH SPECIFIED MULCH. PULL MULCH AWAY FROM TRUNK. MULCH TO 6" OUTSIDE OF STAKES. (PROVIDE 24" RADIUS WOOD MULCH RING WHEN PLANTING IN NATIVE GRASS AREAS OR ROCK MULCH AREAS)
	TOP OF ROOT FLARE SHALL BE 3" ABOVE GRADE OUTSIDE OF PIT.
	TREATED WOOD POST WITH GROMMETED NYLON STRAPS. USE TWO GUY WIRES
	NOTES: 1. INSTALL WATERING SAUCER IN NATIVE AREAS 2. CONSTRUCT 6" HEIGHT WATERING RING FOR II
$1/2(X)$ (^) $1/2(X)$	WATERING. REMOVE IN SOD AREAS PRIOR TO MU

4" LENGTH BY 3/4 DIA. P.V.C. MARKERS TYP.) OVER WIRES	
2 GAUGE GALVANIZED WIRE	
ISE 3 GUY ASSEMBLIES FOR EVERGREENS, AND TREES OVER 3" CALIPER	
4" LENGTH BY 3/4 DIA. P.V.C. MARKERS TYP.) OVER WIRES	
" DEPTH SPECIFIED MULCH. PULL MULCH WAY FROM TRUNK. MULCH TO 6" OUTSIDE OF STAKES. (PROVIDE 24" RADIUS WOOD MULCH RING WHEN PLANTING IN NATIVE GRASS AREAS OR ROCK MULCH AREAS)	
OP OF ROOT FLARE SHALL BE 3" ABOVE	

N.T.S.

G SAUCER IN NATIVE AREAS. IGHT WATERING RING FOR INITIAL WATERING. REMOVE IN SOD AREAS PRIOR TO MULCHING. 3. AFTER SEPTEMBER 1ST, INSTALL 4" TREE TAPE ON DECIDUOUS TREES FROM 6" OFF THE GROUND TO THE FIRST BRANCH. REMOVE PROMPTLY IN SPRING. 4. COMPLETELY REMOVE WIRE BASKET, ALL TWINE & PLASTIC. REMOVE BURLAP OFF TOP 2/3 OF BALL. 5. FILL PLANT PIT WITH 1/2 SPECIFIED SOIL MIX AND 1/2 PIT SOIL.

PLANTING DETAIL FOR SHRUBS, AND ALL CONTAINER PLANTS LARGER THAN 1 GALLON В

N.T.S. SET TOP OF ROOT BALL 1" HIGHER THAN THE FINISHED BED GRADE

SPECIFIED MULCH- CAREFULLY TUCK MULCH AROUND EACH PLANT (PROVIDE 12" RADIUS - WOOD MULCH RING WHEN PLANTING IN NATIVE GRASS AREAS OR ROCK MULCH AREAS)

LOOSEN SIDES OF PLANT PIT, AND WATER THE FILL IN WELL TO ELIMINATE LARGE AIR POCKETS

NOTES: 1. PRUNE ALL DEAD OR DAMAGED BRANCHES PRIOR TO, AND AFTER PLANTING.

- 2. CRUMBLING OR BROKEN ROOT BALLS WILL BE REJECTED.
- 3. DIG PLANT PIT TWICE AS WIDE AND HIGH AS CONTAINER.
- 4. TAKE CARE NOT TO DAMAGE ROOT BALL WHEN REMOVING THE PLANT FROM IT'S CONTAINER.
- 5. FOR ALL PLANTS IDENTIFIED WITH WATER USE OF "LOW" OR "VERY LOW" ON THE PLANT LIST, KEEP WOOD MULCH 2" BACK FROM TRUNK OR STEM.
- 6. FILL PLANT PIT WITH 1/2 SPECIFIED SOIL MIX AND 1/2 PIT SOIL.
- 7. SCORE ROOT BOUND ROOT BALLS TO FREE UP ROOTS.

MAIKER BOYERS 7295 WASHINGTON ST., ADAMS COUNTY, CO 80229

GENERAL LANDSCAPE NOTES

1. ALL LOW PERENNIAL AND GROUNDCOVER PLANTING AREAS SHALL BE MULCHED WITH SHREDDED WESTERN RED CEDAR WOOD MULCH, AT A DEPTH OF 2". WEED BARRIER FABRIC IS NOT REQUIRED UNDER WOOD MULCH.

2. IN AREAS OF NATIVE SEEDING OR AREAS OF ROCK MULCH, ALL NEWLY PLANTED TREES, SHRUBS AND PERENNIALS SHALL HAVE A RING OF WOOD MULCH INSTALLED AROUND THE BASE OF EACH PLANT. SEE THE PLANTING DETAILS FOR THE SPECIFIC SIZING AND DEPTH OF THE WOOD MULCH.

3. ALL OTHER PLANTING BED AREAS SHALL BE MULCHED WITH 1-1/2" GRAY ROSE MULTI-COLORED RIVER ROCK, AT A DEPTH OF 3", INSTALLED OVER PERMEABLE WEED BARRIER FABRIC. DO NOT INSTALL EDGING BETWEEN WOOD MULCH AND ROCK MULCH AREAS.

4. SOD EDGER SHALL BE 14 GAUGE ROLLED TOP STEEL EDGING (DARK GREEN COLOR) IN THE LOCATIONS SHOWN ON THE PLANS. EDGER IS NOT REQUIRED WHERE SOD ABUTS CONCRETE.

5. ALL AREAS TO BE LANDSCAPED SHALL HAVE ORGANIC AMENDMENTS THOROUGHLY INCORPORATED INTO THE SOIL AT A RATE OF 5 CUBIC YARDS PER 1,000 SQUARE FEET, AND TILLED TO A DEPTH OF 6 INCHES.

6. ALL SOD AREAS, BED AREAS, AND LANDSCAPE AREAS SHALL BE FINE GRADED PRIOR TO INSTALLATION OF NEW PLANT MATERIAL. ROCKS, WOOD, AND ANY MATERIAL LARGER THAN 1" IN DIAMETER SHALL BE REMOVED FROM ALL PLANTING AREAS PRIOR TO SODDING AND PLANTING NEW MATERIALS.

7. ANY EXISTING TURF, SHRUBS, TREES, AND PLANT MATERIAL THAT IS SPECIFIED ON THE PLANS TO BE REMOVED, SHALL BE FULLY REMOVED FROM THE SITE, INCLUDING ALL ROOTS.

8. ALL LANDSCAPED AREAS SHALL BE WATERED BY A FULLY AUTOMATIC UNDERGROUND IRRIGATION SYSTEM.

9. SOD AREAS SHALL BE ZONED SEPARATELY THAN BEDS, AND SHALL BE IRRIGATED VIA POP-UP SPRAY HEADS PROVIDING FULL (HEAD TO HEAD) COVERAGE. HEADS SHALL BE COMMERCIAL GRADE WITH REPLACEABLE NOZZLES, PRESSURE REGULATORS, AND CHECK VALVES.

10. BED AREAS SHALL BE ZONED SEPARATELY THAN SOD AREAS, AND SHALL BE IRRIGATED BY INDIVIDUAL DRIP EMITTERS TO EACH PLANT. DRIP COMPONENTS SHALL BE COMMERCIAL GRADE RAIN-BIRD OR EQUAL POINT SOURCE EMITTERS, WITH ALL PLANTS RECEIVING IRRIGATION.

ADAMS COUNTY LANDSCAPE REQUIREMENTS FOR SPECIFIC AREAS OF THE SITE

REQUIREMENT CATEGORY & LOCATION	BUFFERYARD WIDTH REQUIREMENT	WIDTH PROVIDED	LANDSCAPE REQUIREMENTS	LANDSCAPE PROVIDED
WEST BUFFERYARD (213 LF)	N/A (ADJACENT USE IS CDOT OPEN SPACE)	7' - 4"	N/A (ADJACENT USE IS CDOT OPEN SPACE)	7 TREES, 27 SHRUBS, 6 ORN. GRASSES AND 6 FT. PRIVACY FENCE
NORTH BUFFERYARD TYPE 'D' (635 LF)	15'	5' - 7"	3 TREES / 60 L.F. = 32 TREES AND 6 FT. PRIVACY FENCE	32 TREES, 32 SHRUBS, 13 GRASSES AND 6 FT. PRIVACY FENCE
South Bufferyard Type 'C' (399 LF)	15'	10' - 10"	2 TREES / 80 L.F. = 10 TREES AND 6 FT. PRIVACY FENCE	11 TREES, 28 SHRUBS, 9 ORN. GRASSES AND 6 FT. PRIVACY FENCE
STREET FRONTAGE LS WASHINGTON ST. 166 LF) OPTION 3	10' WIDE	5'	2 TREES & 5 SHRUBS / 40 LF. = 9 TREES & 21 SHRUBS	5 TREES, 27 SHRUBS, 9 ORNAMENTAL GRASSES Note: # of trees provided is limited due to utilities on north end.
PARKING LOT LANDSCAPE 87 STALLS PROPOSED)	N / A	N / A	1 TREE / 10 PRKG. STALLS = 9 TREES; AND 75% COVER LIVING LS AREA 25 SF OF INTERNAL LS AREA / 1 STALL=2175 SF	12 TREES, 40 SHRUBS, 39 ORN. GRASSES, + RAIN GARDEN PLANTINGS (TBD). 6,000 SF OF INTERNAL LS AREA

ADAMS COUNTY LANDSCAPE REQUIREMENTS FOR OVERALL SITE

REQUIREMENT CATEGORY	LANDSCAPE REQUIREMENTS	LANDSCAPE AREA OR LANDSCAPE PROVIDED		
REQ. LOT LANDSCAPING (sec. 4-19-07)	A MIN. OF 10% OF THE LOT AREA SHALL BE LANDSCAPED LOT = 92,861.58 SF; 10% = 9,286 SF	17,410.6 SF AT GRADE (18.7% OF THE LOT)		
DWELLING MULTIFAMILY LANDSCAPE (sec. 4-19-09-01-04)	30% OF THE SITE AREA SHALL BE LANDSCAPED; 30% COVER w/ LIVING GROUND MATERIAL LOT = 92,861.58 SF; 30% = 27,858 SF	17,410.6 SF AT GRADE & 2,628 SF ON THE ELEVATED DECKS = 20,038.6 SF (21.6% OF LOT)		
DWELLING MULTIFAMILY REQ. TREES & SHRUBS (sec. 4-19-09-01-04)	1 LG. TREE & 2 SHRUBS, OR 2 ORN. TREES & 2 SHRUBS / 1,500 SF OF LS AREA 20,038.6 SF OF LS AREA = 14 LG. TREES OR 27 ORN. TREES & 27 SHRUBS	13 LARGE TREES, 33 EVGRN. TREES, 22 ORN. TREES, 172 SHRUBS, 153 GRASSES, & 48 PERENNIALS AT GRADE; 8 ORN. TREES, 6 EVGRN. TREES, 14 SHRUBS, 99 ORN. GRASSES, 83 PERENN. ON ELEVATED DECK		

 \bigcirc

OUTDOOR DESIGN GROUP, INC. 5690 WEBSTER STREET ARVADA, CO 80002 (303) 993-4811

PDP & REZONING SUBMITTAL

02.07.2025 L 1.00

LANDSCAPE COVER SHEET & PLANT LIST

LANDSCAPE LEGEND

 \mathbb{A}

 \odot \odot (\cdot)

DECIDUOUS SHADE TREES

ORNAMENTAL TREES

EVERGREEN TREES \leftarrow

DECIDUOUS SHRUBS

 \oplus_{\oplus} EVERGREEN SHRUBS

8 ORNAMENTAL GRASSES

PERENNIALS 0000

SOD

RAIN GARDEN PLANTINGS

20

LANDSCAPE BOULDERS

SYNTHETIC TURF

LANDSCAPE PLAN

PLANTING DETAIL FOR PERENNIALS, ANNUALS, & ALL CONTAINER PLANTS 1 GALLON OR SMALLER С PLANT LIST AREAS)

N.T.S.

SPECIFIED MULCH- CAREFULLY TUCK MULCH AROUND EACH PLANT TO PREVENT THE SMALL PLANTS FROM - DRYING OUT (PROVIDE 8" RADIUS WOOD MULCH RING WHEN PLANTING IN NATIVE GRASS AREAS OR ROCK MULCH

- PLANTING BED SOIL- AMENDED PER SPECIFICATIONS

UNLESS A FORMAL PATTERN IS CALLED FOR, PLACE PLANTS AROUND THE PERIMETER OF THE PLANTING AREA FIRST, THEN FILL IN THE CENTER RANDOMLY AND AVOID CREATING "ROWS"

NOTE: IF INDIVIDUAL PLANT LOCATIONS ARE NOT SHOWN ON THE LANDSCAPE PLAN, SPACE PLANTS AT THE O.C. SPACING SHOWN ON THE LANDSCAPE PLANT LIST

ADAMS COUNTY OPEN SPACE REQUIREMENTS FOR OVERALL SITE

REQUIREMENT CATEGORY	OPEN SPACE & ACTIVE OPEN SPACE AREA REQUIREMENTS	OPEN SPACE & ACTIVE OPEN SPACE AREAS PROVIDED			
MINIMUM OPEN SPACE AREAA MIN. OF 30% OF THE LOT AREA SHALL BE OPEN SPACE.(sec. 3-34-03-05)A MIN. OF 25% OF THE OPEN SPACE SHALL BE ACTIVE OPEN SPACE.		OPEN SPACE AT GRADE = 23,076 SF OPEN SPACE ON ELEV. DECKS = 8,175.6 SF TOTAL OPEN SPACE = 31,251.6 SF or 32.3% of the lot			
	LOT = 92,861.6 SF; 30% = 27,858.5 SF 25% OF 27,858.47 SF = 6,964.6 SF	ACTIVE OPEN SPACE AT GRADE = 6,250.8 SF ACTIVE OPEN SPACE ON ELEVATED DECKS = 8,175.6 SF TOTAL ACTIVE OPEN SPACE = 14,426.4 SF or 46% of the open space			

NOTICE: DUTY OF COOPERATION RELEASE OF THESE DOCUMENTS CONTEMPLATES FURTHER COOPERATION AMONG THE OWNER, HIS CONTRACTOR, AND THE ARCHITECT. DESIGN AND CONSTRUCTION ARE COMPLEX. ALTHOUGH THE ARCHITECT AND HIS CONSULTANTS HAVE PERFORMED THEIR SERVICES WITH DUE CARE AND DILIGENCE, THEY CANNOT GUARANTEE PERFECTION. COMMUNICATION IS IMPERENCE AND VERY CONTINGENCY CANNOT BE ANTICIPATED. ANY ERRORS, OMISSIONS, OR DISCREPANCY DISCOVERED BY THE USE OF THESE DOCUMENTS SHALL BE REPORTED IMMEDIATELY TO THE ARCHITECT. FAILURE TO NOTIFY THE ARCHITECT COMPOUNDS MISUNDERSTANDING AND INCREASES CONSTRUCTION COSTS. A FAILURE TO COPERATE BY SIMPLE NOTICE TO THE ARCHITECT SHALL RELIEVE THE ARCHITECT FROM RESPONSIBILITY FOR ALL CONSEQUENCES ARRIVING OUT OF SUCH CHANGES. THE DESIGNS AND PLANS ARE COPYRIGHT AND ARE NOT TO BE USED OR REPRODUCED WHOLLY OR IN PART WITHOUT THE WRITTEN PERMISSION OF SSARCHITECTS. THE DRAWINGS AND SPECIFICATIONS ARE INSTRUMENTS OF SERVICE AND SHALL REMAIN THE PROPERTY OF THE ARCHITECT WHETHER THE PROJECT FOR WHICH THEY ARE MADE IS EXECUTED OR NOT. COPYRIGHT SSARCHITECTS. DO NOT SCALE FROM DRAWING. VERIFY ALL DIMENSIONS ON SITE.

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

MAIKER BOYERS

OPEN SPACE & ACTIVE OPEN SPACE PLAN

CONSULTANT

MAIKER BOYERS

7295 WASHINGTON ST., ADAMS COUNTY, CO 80229

PDP & REZONING SUBMITTAL LANDSCAPE PLAN

02.07.2025 L 2.00

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

MAIKER BOYERS SITE PLAN

1 **SITE PLAN** 1" = 30'-0"

MAIKER BOYERS

7295 WASHINGTON ST., ADAMS COUNTY, CO 80229

CONSULTANT

PARKING COUNT LEGEND					
PROPOSED PARKING					
STANDARD	= 117 (79%)				
COMPACT	= 31 (21%)				
TOTAL PROPOSED PARKING	= 148 SPACES				
REQUIRED PARKING					
RESIDENTIAL PARKING	= 132 SPACES				
((88) - 1-BR UNITS @ 1 SPACE	= 88 SPACES				
((29) - 2-BR UNITS @ 1.5 SPAC	E = 44 SPACES				
VISITORS @ 15% OF 132	= 20 SPACES				
RETAIL @ 1 SPACE PER 3 SEA	TS = 30 SPACES				
TOTAL REQUIRED PARKING	= 182 SPACES				
PROPOSED PARKING	~ 19.0% REDUCTION				
REDUCTION	(-34 SPACES)				
PROPOSED RESIDENTIAL 1.01 SPACES/ UN					
PARKING RATIO					
PROPOSED BIKE PARKING					
LONG-TERM BIKE PARKING	= 70 (47%)*				
SHORT-TERM BIKE PARKING	= 32 (21%)*				
TOTAL BIKE PARKING	= 102 (68%)*				

*PERCENTAGE OF TOTAL AUTOMOBILE PARKING

TOTAL BUILDING AREA FLOOR AREA LEVEL

01 - GROUND LEVEL	33963 SF
02 - SECOND LEVEL	26021 SF
03 - THIRD LEVEL	25428 SF
04 - FOURTH LEVEL	25428 SF
05 - FIFTH LEVEL	25000 SF
TOTAL BUILDING AREA	135839 SF

ZONING SUMMARY					
	EXISTING	PROPOSED			
ZONING	I-1	PUD			
USE	MANUFACTURING/ DISTRIBUTION	COMMERCIAL, RESIDENTIAL MIXED-USE			
SITE AREA	2.132	2 AC			
DWELLING UNITS PER ACRE	54.8 DUAC				
OCCUPANCY	R-2; M; B				
CONSTRUCTION TYPE	5 STORIES: (4) STORIES TYPE V OVER (1) STORY TYPE IA				
SPRINKLERED	NFPA 13				
PROPOSED HEIGHT	5 STORIES; APPROX. 60' - 0"				
PROPOSED BUILDING AREA	135,839 SF				
PROPOSED SETBACKS					
FRONT	50' - 0"				
REAR	N / A				
SIDE - SOUTH	9' - 9"				
SIDE - NORTH	70'	- 4"			

50' - 0 1/2" SETBACK

 *RECONSTRUCTED ENTRY FACADE OF HISTORIC WASHINGTON SCHOOL

WASHI

BIKE PARKING (8) LINE OF OVERHEAD CANOPY LINE OF BUILDING
 OVERHEAD

Ν

CASE NO. <u>PRC2024-00017</u>

PROPOS	SED	- UNIT B	RE	AKDOWN		
UNIT TYPE		LEVEL		COUNT		
1 BD	02			21		
	02 -		L	21		
1-BR	03 -	I HIRD LEVEL		23		
1-BR	04 -	FOURTH LEVE	-	23		
1-BR	05 -	FIFTH LEVEL		21		
1-BR: 88				88 = 75%		
2-BR	02 -	SECOND LEVE	L	6		
2-BR	03 -	THIRD LEVEL		8		
2-BR	04 -	FOURTH LEVE	_	8		
2-BR	05 -			7		
2-BR 29				29 = 25%		
TOTAL UNIT (COUN	T: 117		117		
(CONCE	PT - OVERALL FLOC	DR AF	REA		
LEVEL		DESCRIPTION	G	ROSS FLOOR AREA		
01 - GROUND I EV	FI	BOH	166	8 SF		
		COMMERCIAL	416	38 SF		
01 - GROUND LEV	EL	COMMON	310)7 SF		
01 - GROUND LEV	EL	GARAGE	250	020 SF		
01 - GROUND LEV	EL		339	63 SF		
	=1	1-BR	132	04 SE		
02 - SECOND LEVI	==	2-BR	102	2 SF		
02 - SECOND LEVI	==	BOH	595	SF		
02 - SECOND LEVI	==		015	SE		
02 - SECOND LEVI	==		638	4 SF		
02 - SECOND LEVI	EL	COMMON	260	21 SF		
		4.00	444	20.05		
			144	0 OF		
			505			
			274			
03 - THIRD LEVEL		COMMON	254	28 SF		
	-1	4.00	444	20.05		
	=L =I	1-DR 2-BR	665	295F		
04 - FOURTH I FVFI		BOH	595	5 SF		
			374	741 SF		
04 - FOURTH LEVE	EL	COMMON	254	28 SF		
			104	40 SE		
			131	40 SF		
			507	4 SF		
			530			
05 - FIETH I EVEL			250	00 SE		

TOTAL GROSS AREA

135839 SF

*REFERENCE IMAGE OF ENTRY TO HISTORIC WASHINGTON SCHOOL HOUSE

SCHOOL HOUSE CORNERSTONE

GROUND AND SECOND LEVEL PLANS

PDP & REZONING SUBMITTAL

SCALE: 1" = 20'-0"

02.07.2025 A 1.10

THE DESIGNS AND PLANS ARE COPYRIGHT AND ARE NOT TO BE USED OR REPRODUCED WHOLLY OR IN PART WITHOUT THE WRITTEN PERMISSION OF SSARCHITECTS. THE DRAWINGS AND SPECIFICATIONS ARE INSTRUMENTS OF SERVICE AND SHALL REMAIN THE PROPERTY OF THE ARCHITECT WHETHER THE PROJECT FOR WHICH THEY ARE MADE IS EXECUTED OR NOT. COPYRIGHT SSARCHITECTS. DO NOT SCALE FROM DRAWING. VERIFY ALL DIMENSIONS ON SITE.

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

CONSULTANT

7295 WASHINGTON ST., ADAMS COUNTY, CO 80229

CASE NO. <u>PRC2024-00017</u>

PROPOSED - UNIT BREAKDOWN						
UNIT TYPE		LEVEL		COUNT		
L				1	_	
1-BR	02 -	SECOND LEVE	EL	21	_	
1-BR	03 - '	THIRD LEVEL		23		
1-BR	04 -	FOURTHIEVE	=1	23	_	
	05 -			21	_	
1 DD: 00	00 -			<u> </u>	/	
1-DR. 00	00		-,	00 = 75%	<u>0</u>	
2-BR	02 -	SECOND LEVE	=L	6		
2-BR	03 -	THIRD LEVEL		8		
2-BR	04 -	FOURTH LEVE	EL	8		
2-BR	05 -	FIFTH LEVEL		7		
2-BR: 29				29 = 25%	6	
TOTAL UNIT C	OUN	T: 117		117		
C	CONCE	PT - OVERALL FLC	OR A	REA	_	
LEVEL		DESCRIPTION	G	ROSS FLOOR AREA		
		POL	100		_	
01 - GROUND LEVI		BOH	160		_	
01 - GROUND LEVI	EL Fl		310	17 SF	_	
01 - GROUND LEVEL		GARAGE	250	020 SF		
01 - GROUND LEVI	EL	0,	339	063 SF	_	
	-,	1 00	120	04.05	_	
	=L =I		102		_	
02 - SECOND LEVE	=L	BOH	505	SE	_	
02 - SECOND LEVE			915	SF	_	
02 - SECOND LEVE	=L		638	84 SF		
02 - SECOND LEVE	EL		260	021 SF	_	
			111	20.95	_	
03 - THIRD LEVEL		2-BR	665	39 SI	_	
03 - THIRD LEVEL		BOH	595	SF	_	
03 - THIRD I EVEL		COMMON	374	1 SF	-	
03 - THIRD LEVEL			254	28 SF	_	
		1-BR	144	30 SF	_	
04 - FOURTH LEVE		2-BR	665	53 51 52 SF	_	
04 - FOURTH LEVE	- <u>-</u> EL	BOH	595	5 SF	-	
04 - FOURTH LEVEL		COMMON	374	1 SF	-	
04 - FOURTH LEVE	EL		254	28 SF		
05 - FIFTH LEVEL		1-BR	131	40 SF		
05 - FIFTH LEVEL		2-BR	587	'4 SF	-	
05 - FIFTH LEVEL		BOH	595	SF	-	
05 - FIFTH LEVEL		COMMON	539	01 SF		
05 - FIFTH LEVEL			250	000 SF		
TOTAL GROSS AR	EA		135	6839 SF		

SCALE: 1" = 20'-0"

80'

02.07.2025 A 1.20

PDP & REZONING SUBMITTAL THIRD AND FOURTH LEVEL PLAN

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

MAIKER BOYERS FIFTH LEVEL & ROOF PLAN

DO NOT SCALE FROM DRAWING. VERIFY ALL DIMENSIONS ON SITE.

CONSULTANT

7295 WASHINGTON ST., ADAMS COUNTY, CO 80229

CASE NO. <u>PRC2024-00017</u>

PROPOSED - UNIT BREAKDOWN						
UNIT TYPE		LEVEL		COUNT		
1-BR	02 -	SECOND LEVE	EL	21		
1-BR	03 -	THIRD LEVEL		23		
1-BR	04 -	FOURTHIEVE	1	23		
	05 -			20		
	05-					
1-DR. 00	00			00 = 75%		
2-BR	02 -	SECOND LEVE	:L	6		
2-BR	03 -	THIRD LEVEL		8		
2-BR	04 -	FOURTH LEVE	L	8		
2-BR	05 -	FIFTH LEVEL		7		
2-BR: 29				29 = 25%		
TOTAL UNIT C	COUN	T: 117		117		
(CONCE	PT - OVERALL FLO	OR AI	REA		
LEVEL		DESCRIPTION	G	ROSS FLOOR AREA		
01 - GROUND LEV	EL	BOH	166	8 SF		
01 - GROUND LEV		COMMERCIAL	416			
01 - GROUND LEVEL		GARAGE	250	07 SF 020 SF		
01 - GROUND LEV	EL	CAINCE	339	63 SF		
02 - SECOND LEVE	EL	1-BR	132	204 SF		
02 - SECOND LEVE	<u>EL</u>	2-BR	492	2 SF		
02 - SECOND LEVE	<u>-L</u>	BOH	595			
02 - SECOND LEVE	=L =1		915			
02 - SECOND LEVE	=L =I	COMMON	260	14 SF 121 SF		
			200	2101		
03 - THIRD LEVEL		1-BR	144	-39 SF		
03 - THIRD LEVEL		2-BR	665	2 SF		
03 - THIRD LEVEL		BOH	595	SF		
03 - THIRD LEVEL		COMMON	374	1 SF		
03 - THIRD LEVEL			254	28 SF		
04 - FOURTH LEVE	EL	1-BR	144	-39 SF		
04 - FOURTH LEVE	EL	2-BR	665	2 SF		
04 - FOURTH LEVEL		BOH	595	5 SF		
04 - FOURTH LEVEL		COMMON	374	41 SF		
04 - FOURTH LEVE	EL		254	28 SF		
05 - FIFTH LEVEL		1-BR	131	40 SF		
05 - FIFTH LEVEL		2-BR	587	'4 SF		
05 - FIFTH LEVEL		BOH	595	SF		
05 - FIFTH LEVEL		COMMON	539	1 SF		
05 - FIFTH LEVEL			250	00 SF		
IUIAL GROSS AR	ΕA		135	839 SF		

TOTAL GROSS AREA

SCALE: 1" = 20'-0"

02.07.2025

80'

PDP & REZONING SUBMITTAL

40'

2 (A 2.00)

2 A 2.00

FIFTH LEVEL & ROOF PLAN | A 1.30

0' 10' 20'

NOTICE: DUTY OF COOPERA N ARE COMPLEX. ALTHOUGH THE ARCHITECT AND HIS CO ERED BY THE USE OF THESE DOCUMENTS SHALL BE REPORTED IMME THE ARCHITECT SHALL RELIEVE THE ARCHITECT FROM RESPO THE DESIGNS AND PLANS ARE COPYRIGHT AND ARE NOT TO BE USED OR REPRODUCED WHOLLY OR IN PART WITHOUT THE WRITTEN PERMISSION OF SSARCHITECTS. THE DRAWINGS AND SPECIFICATIONS ARE INSTRUMENTS OF SERVICE AND SHALL REMAIN THE PROPERTY OF THE ARCHITECT WHETHER THE PROJECT FOR WHICH THEY ARE MADE IS EXECUTED OR NOT. COPYRIGHT SSARCHITECTS. DO NOT SCALE FROM DRAWING. VERIFY ALL DIMENSIONS ON SITE.

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

MAIKER BOYERS

ION AMONG THE OWNER, HIS CONTRACTOR, AND THE ARCHITECT. DESIGN AND TS HAVE PERFORMED THEIR SERVICES WITH DUE CARE AND ECT AND EVERY CONTINGENCY CANNOT BE ANTICIPATED. ANY COSTS, A FAILURE TO JENCES ARRIVING OUT OF SUCH

No. Date

CONSULTANT

CASE NO. <u>PRC2024-00017</u>

PDP & REZONING SUBMITTAL 02.07.2025 A 2.00 ELEVATIONS

4 NORTH COURTYARD - EAST ELEVATION

3 NORTH COURTYARD - WEST ELEVATION

RED BY THE USE OF THESE DO THE DESIGNS AND PLANS ARE COPYRIGHT AND ARE NOT TO BE USED OR REPRODUCED WHOLLY OR IN PART WITHOUT THE WRITTEN PERMISSION OF SSARCHITECTS. THE DRAWINGS AND SPECIFICATIONS ARE INSTRUMENTS OF SERVICE AND SHALL REMAIN THE PROPERTY OF THE ARCHITECT WHETHER THE PROJECT FOR WHICH THEY ARE MADE IS EXECUTED OR NOT. COPYRIGHT SSARCHITECTS. DO NOT SCALE FROM DRAWING. VERIFY ALL DIMENSIONS ON SITE.

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

MAIKER BOYERS ELEVATIONS

1 SOUTH COURTYARD - NORTH ELEVATION

RACTOR, AND THE ARCHITECT. DESIGN AND EIR SERVICES WITH DUE CARE AND ENCY CANNOT BE ANTICIPATED. ANY

MAIKER BOYERS 7295 WASHINGTON ST., ADAMS COUNTY, CO 80229

CONSULTANT

ELEVATIONS

02.07.2025 A 2.01

PDP & REZONING SUBMITTAL

IESE DOCUMENTS CONTEMPLATES FURTHER COOPERATION AMONG THE OWNER, HIS CONTRACTOR, AND THE ARCHITECT. DESIGN AND I ARE COMPLEX. ALTHOUGH THE ARCHITECT AND HIS CONSULTANTS HAVE PERFORMED THEIR SERVICES WITH DUE CARE AND Y CANNOT GUARANTEE PERFECTION. COMMUNICATION IS IMPERFECT AND EVERY CONTINGENCY CANNOT BE ANTICIPATED. ANY IONS, OR DISCREPANCY DISCOVERED BY THE USE OF THESE DOCUMENTS SHALL BE REPORTED IMMEDIATELY TO THE ARCHITECT. IFY THE ARCHITECT COMPOUNDS MISUNDERSTANDING AND INCREASES CONSTRUCTION COSTS. A FAILURE TO COOPERATE BY SIMPLE NBCHITECT SHALL REFLECT HE APOLITECT FOR DESTANDING AND INCREASES CONSTRUCTION COSTS. A FAILURE TO COOPERATE BY SIMPLE SHALL RELIEVE THE ARCHITECT FROM RESPONSIBILITY FOR ALL CONSE THE DESIGNS AND PLANS ARE COPYRIGHT AND ARE NOT TO BE USED OR REPRODUCED WHOLLY OR IN PART WITHOUT THE WRITTEN PERMISSION OF SSARCHITECTS. THE DRAWINGS AND SPECIFICATIONS ARE INSTRUMENTS OF SERVICE AND SHALL REMAIN THE PROPERTY OF THE ARCHITECT WHETHER THE PROJECT FOR WHICH THEY ARE MADE IS EXECUTED OR NOT. COPYRIGHT SSARCHITECTS. DO NOT SCALE FROM DRAWING. VERIFY ALL DIMENSIONS ON SITE.

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

MAIKER BOYERS CONCEPTUAL 3-D VIEWS

VIEW FROM WASHINGTON STREET & 73RD AVE. INTERSECTION CONCEPTUAL RENDERING

MAIKER BOYERS

7295 WASHINGTON ST., ADAMS COUNTY, CO 80229

CONSULTANT

CASE NO. <u>PRC2024-00017</u>

PROMINENT COMMUNITY ENTRY CONCEPTUAL RENDERING

SITE HISTORY REFERENCE IMAGERY

INDENITY AND BRANDING CONCEPTUAL RENDERING

MURAL ART CONCEPTUAL RENDERING

02.07.2025

PDP & REZONING SUBMITTAL A 2.10 CONCEPTUAL 3-D VIEWS

NOTICE: DUTY OF COOPERATION RELEASE OF THESE DOCUMENTS CONTEMPLATES FURTHER COOPERATION AMONG THE OWNER, HIS CONTRACTOR, AND THE ARCHITECT. DESIGN AND CONSTRUCTION ARE COMPLEX. ALTHOUGH THE ARCHITECT AND HIS CONSULTANTS HAVE PERFORMED THEIR SERVICES WITH DUE CARE AND DILIGENCE, THEY CANNOT GUARANTEE PERFECTION. COMMUNICATION IS IMPERECT AND EVERY CONTINGENCY CANNOT BE ANTICIPATED. ANY ERRORS, OMISSIONS, OR DISCREPANCY DISCOVERED BY THE USE OF THESE DOCUMENTS SHALL BE REPORTED IMMEDIATELY TO THE ARCHITECT. FAILURE TO NOTIFY THE ARCHITECT COMPOUNDS MISUNDERSTANDING AND INCREASES CONSTRUCTION COSTS. A FAILURE TO COOPERATE BY SIMPLE NOTICE TO THE ARCHITECT SHALL RELIEVE THE ARCHITECT FROM RESPONSIBILITY FOR ALL CONSEQUENCES ARRIVING OUT OF SUCH CHANGES. THE DESIGNS AND PLANS ARE COPYRIGHT AND ARE NOT TO BE USED OR REPRODUCED WHOLLY OR IN PART WITHOUT THE WRITTEN PERMISSION OF SSARCHITECTS. THE DRAWINGS AND SPECIFICATIONS ARE INSTRUMENTS OF SERVICE AND SHALL REMAIN THE PROPERTY OF THE ARCHITECT WHETHER THE PROJECT FOR WHICH THEY ARE MADE IS EXECUTED OR NOT. COPYRIGHT SSARCHITECTS. DO NOT SCALE FROM DRAWING. VERIFY ALL DIMENSIONS ON SITE.

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

MAIKER BOYERS CONCEPTUAL 3-D VIEWS

VIEW FROM INTERSTATE 270 CONCEPTUAL RENDERING

MAIKER BOYERS

7295 WASHINGTON ST., ADAMS COUNTY, CO 80229

CONSULTANT

CASE NO. <u>PRC2024-00017</u>

INTIMATE RESIDENTIAL ENTRY CONCEPTUAL RENDERING

SITE HISTORY REFERENCE IMAGERY

OUTDOOR SPACE CONCEPTUAL RENDERING

ACTIVATED STOREFRONT CONCEPTUAL RENDERING

PDP & REZONING SUBMITTAL 02.07.2025 A 2.11 CONCEPTUAL 3-D VIEWS

SITE CALCULATION STAT	TISTICS:			RAT	IOS*:					
AREA	AVG (FC)	MAX (FC)	MIN (FC)	MAX/MIN	AVG/MIN					
SITE	0.6	7.0	0.0	N/A	N/A					
DRIVE AISLE	0.6	1.5	0.1	18.0:1	3.0:1					
PARKING	0.8	1.0	0.1	18.0:1	7.0:1					
PROPERTY LINE	0.1	1.1	0.0	N/A	N/A					
20' BEYOND PROPERTY LINE	0.0	0.1	0.0	N/A	N/A					
LEVEL 2 COURTYARDS	0.6	10.5	0.0	N/A	N/A					
LEVEL 5 DECK	3.4	6.7	0.5	13.4:1	6.8:1					
(*)NOTE: THESE VALUES ARE RA	TIOS, NOT F	OOTCANDLE	ES. RATIOS F	REPRESENT						
QUANTITATIVE RELATION BETWEEN TWO VALUES AND ARE UNITLESS										

LUMINAIRE SCHEDULE

TYPE	DESCRIPTION
B1	BOLLARD, 360-DEG DISTRIBUTION, FULL CUTOFF
C1	CATENARY LIGHTING, 24" SPACING, FULL CUTOFF CANOPY
D1	4" RECESSED DOWNLIGHT, WIDE DISTRIBUTION
D2	4" RECESSED WALL WASH DOWNLIGHT
E1	48" LINEAR WALL GRAZER MURAL LIGHT, 10-DEG X 10-DEG OPTICS, FULL CUTOFF, 18" EXTENDED ARM
P1	POLE MOUNTED AREA LIGHT, TYPE 3 DISTRIBUTION, FULL CUTOFF, BACKLI CONTROL, DIMMING DRIVER
P4	POLE MOUNTED PEDESTRIAN LIGHT, TYPE 3 DISTRIBUTION, FULL CUTOFF DIMMING DRIVER
L1	12' LINEAR RECESSED FIXTURE, DIMMED TO 20%
L2	4' LINEAR RECESSED FIXTURE, DIMMED TO 20%
T1	TAPE LIGHT, WET RATED, MOUNTED WITHIN EXTRUSION
W1	WALL SCONCE FORWARD THROW, FULL CUTOFF
W2	WALL SCONCE, FULL CUTOFF
W3	WALL SCONCE TO HIGHLIGHT ARCHITECTURAL FEATURES, UP/DOWN 15-DE NARROW BEAMS
W4	WALL SCONCE, TYPE 4 FORWARD DISTRIBUTION, FULL CUTOFF
ABBRE	/IATIONS: BF - BOTTOM OF FIXTURE; OH - OVERALL FIXTURE HEIGHT; RD - R
SCHEDU	JLED NOTES:
1.	FIXTURE IS USED FOR ARCHITECTURAL LIGHTING PURPOSES AND GREATER
	BY ADAMS COUNTY DESIGN REQUIREMENTS AND PERFORMANCE STANDAR
. 2.	FIATURE IS MUUNTED AT 0-8 AFF UNDER PLANTERS AT NURTH COURTYAR

	+0.0	+0.0	+0.0	+ ^{0.1}	+ ^{0.1}	+ ^{0.1}	+ ^{0.1}	+0.1	+0.1	+ ^{0.1}	+0.0	+0.0	+0.0	+0.0	+0.0	+0.0	+0.0	+0.0	+0.0	+0.0	+0.0	+0.0	+0.0	+0.0	+0.0	+0.0	+0.0	+0.0
	+ ^{0.0} /	+ ^{0.0}	+ ^{0.1}	+ ^{0.2}	+ ^{0.3}	+ ^{0.3}	+ ^{0.3}	+ ^{0.3}	+ ^{0.2}	+ ^{0.1}	+ ^{0.1}	+ ^{0.1}	+ ^{0.1}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}
/	+0.0	+ ^{0.1}	+0.2	+ ^{0.5}	+ ^{1.1}	+ ^{0.9}	+ ^{1.0}	+ ^{1.0}	0.5	+ ^{0.3}	+ ^{0.2}	+0.2	+0.2	+0.2	+0.3	+0.3	+0.2	+0.2	+0.2	~+0.1_	0.1	+0.2	+0.3	+0.3	+0.3	± ^{0.3}	+ ^{0.3}	0.3
$\left\{ \right\}$	+ ^{0.0}	+0.1	0.3	+0.8/	+2.8	(+)•(- +1- 10'(+) (+) 	+2.6	+	0.6	-)-)(+) + ⁰⁷	+1.0	+			+1.0	+.0	0.6	•)•)(•)(•)]+°.4	+0,4	+0.7	+10	+		-0.8 -	₽ ^{1.0}	+1.0
	A 0.0	+ ^{0.1}	+03	+0.9	+ ^{2.9}	+ ^{4.5}	+ ^{4.2}	+ ^{4.1}	+22	0.8 (+)(+)	0.6	+ ^{0.8}	+ ^{1.0}	+1.0	1, 20 1.0	+ ^{1.0}	+ ^{1.0}	+1.0	-0.7	+0.5	+0.5	+ ^{0.7}	+ ^{1.0}	+1.0	, 20°-0 + ^{1.0}	+ ^{1.0}	+ ^{1.0}	+1.0
	+0.0	+ ^{0.1}	+0.2		1.9	+4.3	+ ^{3.2}	+4.3	1.4	+ 0.8	+0.7	_+ ^{0.9}	+ ^{1.2}	+ ^{1.1}	+ ^{1.1}	+ ^{1.1}	+ ^{1.2}	+ ^{1.2}	+ ^{0.8}	+0.6	+05	+ ^{0.7}	+ ^{0.9}	+ ^{0.9}	+ ^{0.8}	+ ^{0.8}	+ ^{0.8}	+0.9
	+ ^{0.0}	+0.1	+ ^{0.2}	+		24, 10 ☐ 3.3	'-0" OI _+ ^{3.8}	H + ^{4.6}	+ ^{2.8}	4, 10. +1.6 +	+ ^{1.2}	+ ^{1.1}	+ ^{1.4}	+ ^{1.4}	+ ^{1.4}	+ ^{1.3}	+ ^{1.3}	+ ^{1.5}	+ ^{1.3}	+ ^{1.1}	+ ^{0.8}	+ ^{0.7}	+ ^{0.8}	+ ^{0.7}	+ ^{0.7}	+ ^{0.6}	+ ^{0.6}	+ ^{0.6}
	+ ^{0.0}	+0.1	+ ^{0.1}	+0.3		°+ ^{2.1}	2.3	33	4.5 ⁽	- -3.8	+2.1	+ ^{1.3}	+ ^{2.4}	+ ^{3.3}	+ ^{3.5}	+1.9	+ ^{1.8}	+ ^{3.4}	+ ^{3.4}	+2.6	1.1	+ ^{1.0}	+ ^{1.0}	+1.0	+0.8	+0.5	+ ^{0.4}	+ ^{0.4}
	+ ^{0.0}	+ ^{0.0}	+0.1	+ ^{0.1}	10.8	07	1.1	+2.3	⊢²₽	- -+ ^{1.9}	+2.0	+ ^{1.2}	+2.4	+0	+2.2	+ ^{1.8}	+1.7	+2.3	1.3	2 .1	+1.2	A1.7	+ ^{2.9}	+2.9+	+0	0.6	+ ^{0.3}	+0.5
	+ ^{0.0}	+ ^{0.0}	+0.0	\ + ^{0.1}	+ ^{0.2}	+0.3	+0.5	(+)(+) + 0.8	(+) + ^{0.6}		(*) + +	。 + ^{0.6}	+	(+)+)(+ + 10' 0	+) + ^{0.6}	+ ^{0.7}	+	$+ \frac{0.7}{10}$	+0.5	• • • • • • • • • • • • • • • • • • •	-0.8 .+	+ ^{2.0}		10'-0"	 2.0 ₫Ħ	+0.6	+ ^{0.4}	+14
	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ 0.0	+ ^{0.1}	+ ^{0.1}	+ ^{0.2}	+ ^{0.2}	+, 10-	+ ^{0.2}	+ ^{0.2}	+0.2	+ ^{0.2}	+ ^{0.2}	0⊓ª + ^{0.2}	+0.2	+0.2	+ ^{0.2}	+ ^{0.2}	н + ^{0.3}	+0.4		0.6	0.5	+	+ ^{0.3}	+ ^{0.3}	+2.6
	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+0.0	+ ^{0.0}	+ ^{0.1}	+ ^{0.1}	+ ^{0.1}	+ ^{0.1}	+ ^{0.1}	+ ^{0.1}	+ ^{0.1}	+ ^{0.1}	+ ^{0.1}	+ ^{0.1}	+ ^{0.1}	+ ^{0.1}	+ ^{0.1}	+ ^{0.↑}	→	+ ^{0.1}	+ ^{0.2}	+ 0.2	02 +	+0.2	+ ^{0.1}	+ ^{0.2}	+ ^{1.5}
	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+0.0	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+0.0	+ ^{0.0}	+ ^{0.0}	+0.0	+0,1	+0.1	+ ^{0.1}	+ ^{0.1}		+0.1	+ ^{0.2}	+2.2
																				+ ^{0.0}	+ ^{0.0}	+0.0	+0.0	+ ^{0.0}	+ ^{0.0}	+ 0.0	0.2	+
																				+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+0.0	+0.0	+0.0	+ ^{0.0}	+ ^{0.1}	
																				+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+0.0	+ ^{0.0}	+0.0	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}
																				+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+0.0	+ ^{0.0}	+ ^{0.0}	+0.0	+00	+0.0
																				+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+0.0	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+0.0
																				+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+0.0	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}
																				+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+0.0	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}
																				+0.0	+0.0	+ ^{0.0}	+0.0	+0.0	+ ^{0.0}	+0.0	+ ^{0.0}	+ ^{0.0}
																				+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+0.0	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}
																				+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+0.0	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}
																				+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+0.0	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}
																				+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+0.0	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}
																				+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}
																				+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}	+ ^{0.0}

DO NOT SCALE FROM DRAWING. VERIFY ALL DIMENSIONS ON SITE

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

MAIKER BOYERS SITE PHOTOMETRIC PLAN

	MANUFACTURER				DRIVER/								
	OR APPROVED	CATALOG SERIES NUMBER	LAMPS	INPUT	DIM	LUMENS	VOLTAGE	BUG RATING	MO	UNTI	NG		NOTES
	EQUIVALENT	OR APPROVED EQUIVALENT	(QTY) TYPE	VA	PROTOCOL				R	S	Р	W	
	BEGA	B84691, B84003	LED 3000K	25.2	0-10V	709	120/277	B2 U0 G0			X		43" OH
	PRIMUS	DSW-24-120-G16.5F-27/200-DSC7-LTK	LED 2700K	2.0/BULB	0-10V	200/BULB	120	B1 U0 G2		X			+10'-6" AFF, UNO
	GOTHAM	EVO4-30/07-AR-LD-WD-MVOLT-EZ1	LED 3000K	7.9	0-10V	750	120/277	B2 U0 G1	X				MOUNTED IN OVERHANG
	GOTHAM	EVO4LW-30/07-AR-LD-MVOLT-EZ-1	LED 3000K	7.9	0-10V	750	120/277	B0 U0 G1	X				MOUNTED IN OVERHANG
	INSIGHT	PEX-MO-3000K-10-EXA-18-48"-277V-DIM-MG	LED 3000K	28	0-10V	2582	277	B2 U0 G1				X	+49'-6" AFF
GHT	BEACON	VP-1-160L-35-3K8-3-UNV-BLT-BC-ADT	LED 3000K	36.8	0-10V	3014	120/277	B0 U0 G1					+20'-0" OH
	KIM LIGHTING	UR20-96L-30-3K8-3-UNV-PT-BLT-7PR	LED 3000K	28.2	0-10V	3326	120/277	B1 U0 G1					+10'-0" OH
	LITECONTROL	2L-XX-D-12'3-06-SOF-XX-30K9-D030-D01-1C- UNV	LED 3000K	33.3	0-10V	7200	120/277	B2 U0 G0	X				MOUNTED IN OVERHANG
	LITECONTROL	2L-XX-D-4'3-04-SOF-XX-30K9-D030-D01-1C- UNV	LED 3000K	11.1	0-10V	1800	120/277	B2 U0 G0	X				MOUNTED IN OVERHANG
	WAC LIGHTING	8352-30-WT, T24-OD-CH5-CL	LED 3000K	1.5/FT	0-10V	100/FT	12	B0 U0 G2		x			NOTE 2
	LITHONIA	WDGE1-LED-P1-30K-80CRI-VF-MVOLT- DBLXD	LED 3000K	10	0-10V	1161	120/277	B0 U0 G0				X	+9'-0" AFF, UNO
	WAC LIGHTING	WS-W14911-BK	LED 3000K	7	0-10V	441	120	B1 U0 G0				X	+9'-0" AFF, UNO
G		CY1-15-3K8-2-SP-SP-UNV-BLT-CB-FPP	LED 3000K	17.3	0-10V	1701	120/277	B2 U2 G0				X	NOTE 1, +10'-6" AFF
	KIM LIGHTING	CY1-25-3K8-1-4-UNV-BLT-R-FPP	LED 3000K	26	0-10V	2201	120/277	B1 U0 G1				X	+10'-6" AFF

R THAN 90% OF TOTAL DISTRIBUTION PATTERN OF LIGHT IS WITHIN THE ILLUMINATED STRUCTURE AS ALLOWED AND REQUIRED STANDARDS 4-16-01.4.

RDS 4-16-01.4. RD AND 2'-6" AFF UNDER RAILING AT SOUTH COURTYARD ON LEVEL 2

CONSULTANT

(ALL SHEETS)

ALL OUTDOOR LIGHTING SHALL HAVE LIGHT SOURCES THAT ARE CONCEALED BY A FULL CUTOFF LIGHTING FIXTURE SO THAT THE LIGHT SOURCE IS NOT VISIBLE FROM ANY STREET RIGHT-OF-WAY OR ADJACENT PROPERTIES. IN ORDER TO DIRECT LIGHT DOWNWARD AND MINIMIZE THE AMOUNT OF LIGHT SPILL INTO THE NIGHT SKY AND ONTO ADJACENT PROPERTIES, ALL LIGHTING FIXTURES SHALL BE FULL CUTOFF LIGHTING FIXTURES.

NO SUBSTITUTIONS, ADDITIONS, OR CHANGES MAY BE MADE WITHOUT PRIOR

PRIOR TO ISSUING A CERTIFICATE OF OCCUPANCY THE COUNTY MAY REQUIRE CERTIFICATION THAT THE PROPERTY IS COMPLIANT WITH THE APPROVED

ADJACENT TO THE RIGHT OF WAY, SHALL BE ORIENTED IN SUCH A MANNER OR LIMITED IN LUMEN OUTPUT TO PREVENT GLARE PROBLEMS AND SHALL NOT

SIGNAGE LIGHTING SHALL BE APPROVED AS PART OF A SEPARATE SIGN PERMIT.

GENERAL NOTES

APPROVAL BY ADAMS COUNTY.

PLANS AND REGULATIONS OF THE COUNTY.

D. ALL CALCULATION POINTS ARE AT GRADE.

C. ALL CALCULATIONS ARE DONE WITH LIGHT LOSS FACTOR OF 1.0

ANY PROPOSED LIGHT FIXTURES INSTALLED ON PRIVATE PROPERTY.

EXCEED NATIONAL IES LIGHTING STANDARDS FOR DISABILITY GLARE.

- LUMINAIRES SHALL BE SHIELDED AND DIRECTED TO AVOID GLARE AND OVERSPILL ONTO ADJACENT PROPERTY.
- ALL EXTERIOR LIGHT FIXTURES SHALL BE FULL CUTOFF FIXTURES THAT ARE DIRECTED DOWNWARD (90 DEGREES FROM TRUE VERTICAL) AND SHALL HAVE FLAT LENSES, EMITTING NO MORE THAN 10 PERCENT OF THE TOTAL LUMENS BETWEEN 80 AND 90 DEGREES FROM TRUE VERTICAL. FIXTURES SHALL BE CONFIGURED SO THAT LIGHTS DO NOT CAUSE GLARE.
- ALL LIGHT FIXTURES ON STRUCTURES, POLES, BOLLARDS, STANDS, OR MOUNTED ON A BUILDING SHALL HAVE A SHIELD, ADJUSTABLE REFLECTOR, AND/OR NON-PROTRUDING DIFFUSER TO SHIELD THE LIGHT SOURCE FROM SIGHT FROM ADJACENT RESIDENTIAL ZONING DISTRICTS.
- MOTION-ACTIVATED SECURITY LIGHTING SHALL BE TIMED TO TURN OFF AFTER NOT MORE THAN FIVE MINUTES AFTER MOTION ACTIVATION.
- WALL PACKS ON THE EXTERIOR OF THE BUILDING SHALL BE FULLY SHIELDED (E.G., TRUE CUT-OFF TYPE BULB OR LIGHT SOURCE NOT VISIBLE FROM
- LIGHT SPILLOVER FROM LEVEL 2 ONTO THE GROUND LEVEL IS REFLECTED IN Μ. THE CALCULATION POINTS ON THE SITE PLAN PHOTOMETRIC.
- OFF-SITE) TO DIRECT THE LIGHT VERTICALLY DOWNWARD.
- $1 + \frac{1.1}{4} + \frac{0.7}{4} + \frac{0.4}{4} + \frac{0.2}{4} + \frac{0.1}{4} + \frac{0.0}{4} +$ 20' BEYOND PROPERTY LINE **B1 B1 3.8 +1.2 +0.1 +0.0 +0.0 +0.0 +0.0** $\begin{array}{c} B_{10} \\ +2.5 \\ +2.5 \\ +2.5 \\ +2.5 \\ +2.5 \\ +0.6 \\ +0.0 \\$ $+^{1.2}$ $+^{1.0}$ $+^{1.0}$ $+^{1.0}$ $+^{0.3}$ $+^{0.1}$ $+^{0.0}$ $+^{0.0}$ $+^{0.0}$ $\begin{array}{c} \mathsf{P1, 20'-0'' OH} \\ \mathsf{+}^{1.2} \\ \mathsf{+}^{1.0} \\ \mathsf{+}^{1.0} \\ \mathsf{+}^{1.0} \\ \mathsf{+}^{0.3} \\ \mathsf{+}^{0.0} \\ \mathsf{+}^{0.0} \\ \mathsf{+}^{0.0} \\ \mathsf{+}^{0.0} \\ \mathsf{+}^{0.0} \\ \mathsf{+}^{0.0} \end{array}$ $4^{1.2}$ +^{1.3} +^{1.2} +^{0.9} +^{0.9} +^{0.4} +^{0.1} +^{0.0} +^{0.0} = 3 +^{1.3} +^{1.3} +^{0.9} +^{0.9} +^{0.5} +^{0.1} +^{0.0} +^{0.0} +^{0.0} $)^{1}-6^{"}$ $\mathbf{P}^{4.5}$ + 0.3 + 0.5 + 0.7 + 1.0 + 0.9 + 0.3 + 0.0 + 0.0 + 0.0 + 0.0 $\begin{array}{c} \bullet 5.2 \\ \pm .2 \\ \pm$ +0.3 +0.5 +0.7 +0.9 +0.3 +0.3 +0.0 +0.0 +0.0 +0.0

CASE NO. PRC2024-00017

PDP & REZONING SUBMITTAL 02.07.2025 E 1.10 SITE PHOTOMETRIC PLAN

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

MAIKER BOYERS LEVELS 2 & 5 PHOTOMETRIC PLANS

LEVELS 2 & 5 PHOTOMETRIC PLANS

PDP & REZONING SUBMITTAL

02.07.2025 E 1.20

- PROPERTY LINE

- PROPERTY LINE

CASE NO. PRC2024-00017

NOTICE: DUTY OF COOPERATION RELEASE OF THESE DOCUMENTS CONTEMPLATES FURTHER COOPERATION AMONG THE OWNER, HIS CONTRACTOR, AND THE ARCHITECT. DESIGN AND CONSTRUCTION ARE COMPLEX. ALTHOUGH THE ARCHITECT AND HIS CONSULTANTS HAVE PERFORMED THEIR SERVICES WITH DUE CARE AND DILIGENCE, THEY CANNOT GUARANTEE PERFECTION. COMMUNICATION IS IMPERFECT AND EVERY CONTINGENCY CANNOT BE ANTICIPATED. ANY RERORS, OMISSIONS, OR DISCREPANCY DISCOVERED BY THE USE OF THESE DOCUMENTS SHALL BE REPORTED IMMEDIATELY TO THE ARCHITECT. FAILURE TO NOTIFY THE ARCHITECT COMPOUNDS MISUNDERSTANDING AND INCREASES CONSTRUCTION COSTS. A FAILURE TO COOPERATE BY SIMPLE DTICE TO THE ARCHITECT SHALL RELIEVE THE ARCHITECT FROM RESPONSIBILITY FOR ALL CONSEQUENCES ARRIVING OUT OF SUCH CHANGES. THE DESIGNS AND PLANS ARE COPYRIGHT AND ARE NOT TO BE USED OR REPRODUCED WHOLLY OR IN PART WITHOUT THE WRITTEN PERMISSION OF SSARCHITECTS. THE DRAWINGS AND SPECIFICATIONS ARE INSTRUMENTS OF SERVICE AND SHALL REMAIN THE PROPERTY OF THE ARCHITECT WHETHER THE PROJECT FOR WHICH THEY ARE MADE IS EXECUTED OR NOT. COPYRIGHT SSARCHITECTS. DO NOT SCALE FROM DRAWING. VERIFY ALL DIMENSIONS ON SITE.

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

MAIKER BOYERS LIGHTING CUTSHEETS

Ramirez, ohnson, & ssociates 3301 Lawrence SL Stel Denver, CO 80205 720,598,0774 www.tja-eng.com CONSULTANT

MAIKER BOYERS 7295 WASHINGTON ST., ADAMS COUNTY, CO 80229

CASE NO. PRC2024-00017

CAT. #	T. #: PEX -	 G G T T SURFACE Wall, Ceiling, or 3G ANSI 136, 31 EXTENDED / X = Specify 6', I: STAKE G LENGTH 12.00" 48.00" VOLTAGE 120V 277V 	Image: CE		8 EX S	SM SM I20 277<	Sep Sep CONTROL O-10V DIMMIN O-10V DIMMIN O-10V DIMMIN Default factory setting Fibtures are not pre- factory. A DIMXCAT fixture resolution and separately. See contr Fibtures are recessparately. DMX CAT factory. DALI Controls and Dali but	Larate options w IO VG (1%) 1% with compating VG (1%) VG	tih dashes DI ible controls DMXDI Resolution eled at the or on-site si be orderec / / vith default ed. Must be an below.
is intended for a 6.00° fixtur e source	6 10 10 1060 15 1530 1560 200 2060 300 30060 400 400 4060 60 100 ASUL ASUL ASDL 7 ASDR	 [6] [2 [5] MOUNTIN SURFACE Wall, Ceiling, or 3G ANSI 136,31 EXTENDED / X = Specify 6', 12 STAKE [6] LENGTH 12.00" 48.00" [7] VOLTAGE 120V 277V 	Image: CE Image: or Ground 1136.31 rated DED ARM fy 6*, 12* or 18*	nd d 18"	B EX S	SM (A-X) STM 12 48 120 277 [Sep CONTROL O-10V DIMMIN O-10V DIMMIN O-10V dims down to (by others) DMX DIMMIN Default factory setting Futures are not pre-a factory. A DMXCAT fixture resolution and separately. See contri Totarde separately. DMX Dimminus DMXCAT controls and Dali but	ID ID ID ID ID ID ID ID ID ID	Ith dashes
5 Is intended for a 6.00° fixtur a source P ZE UPLIGHT, R FEED ZE UPLIGHT, VER FEED ZE DOWNLIGHT, R FEED ZE DOWNLIGHT, R FEED ZE DOWNLIGHT,	Image: Constraint of the second sec	(5) (2) (5) MOUNTIN SURFACE Woll, Ceiling, or Woll, Ceiling, or 3G ANSI 136.31 EXTENDED / X = Specify 6°, 12 STAKE (6) (6) LENGTH 12.00° 48.00° (7) VOLTAGE 120V 277V	Image: Constraint of the second se	nd d 1 18"	B EX S	SM (A-X STM 12 48 120 277 [Sep CONTROL O-10V DIMMIN O-10V dims down to (by others) DMX DIMMIN Default factory setting Phytics are not pre-o- factory. A DMXCA11 Rivers are not pre-o- factory. A DMXCA1 Rivers are shipped dodressed chornel 1 A CD5/RDM Distribut ordered separately. DMX controls are rec separately. DALI Controls and Dati but	Darate options w Darate options w Darate options of the option Darate options of the options below of the option option options below of the option option option options below options below op	It dashes DI ible controls DMXD Resolution eled at the or on-site st be ordered v. with default ed. Must be an below.
is intended for a 6.00° fixture a source is a cource ze UPUGHT, R FEED ZE UPUGHT, VER FEED ZE DOWNLIGHT, R FEED ZE DOWNLIGHT, R FEED ZE DOWNLIGHT, R FEED ZE DOWNLIGHT, R FEED	6 10 10 1060 15 1530 1560 20 2060 300 2060 300 40 4060 400 4060 400 4060 50 ASUL ASUL ASDL 7 ASDR	[6] [2] [5] MOUNTIN SURFACE Wall, Ceiling, or Wall, Ceiling, or 3G ANSI 136.3 EXTENDED / X = Specify 6*, 1: STAKE STAKE [6] LENGTH 12.00" 48.00" [7] VOLTAGE 120V 277V	[Z] NTING CE Illing, or Ground I 136.31 rated DED ARM fy 6 ^r , 12 [*] or 18 ⁿ	nd d 18"	B EX S	SM (A-X STM 12 48 120 277 [CONTROL O-10V DIMMIN O-10V dims down to (by others) DMX DIMMIN Default factory setting Potures are not pre- factory. A DMXCA1 facture resolution and separately. See contr Fitures are shipped dadressed channel 1 A CDS/RDM Distrib ordered separately. DMX Controls are rec separately. DALI Controls and Dali but	ID VG (1%) 1% with compa G J is DMX System iddressing, Mr. of options below room the factory train t	DI ible controls DMXDJ. Resolution eled at the or on-site site or offerent v. with default ed. Must be and below.
e source is intended for a 6.00° fixtur e source	1030 1060 15 1530 1560 200 2060 3060 400 4060 4060 60 100 ASUL ASUR ASDL ; ASDR	[5] MOUNTIN SURFACE Wall, Ceiling, or Wall, Ceiling, or 3G ANSI 136.3 EXTENDED, X = Specify 6', I: STAKE [6] LENGTH 12.00" 48.00" [7] VOLTAGE 120V 277V	NTING CE Illing, or Ground 1 36.31 rated DED ARM fy 6*, 12* or 18" TH	nd d 18"	EX	SM (A-X STM 12 48 120 277 [CONTROL O-10V DIMMIN O-10V dims down to (by others) DMX DIMMIN Default factory setting Retures are not pre-a factory, A DMXCAT Reture resolution and separately. See contr Fotures are shipped addressed characteristics are rec separately. DALI Controls and Dali but	(1 %) (1 %) (1 %) (1 %) (2 %) (DI ible controls <u>DMXD</u> Resolution eled at the or on-site st be ordered v. with default ed. Must be ins below.
e source s is intended for a 6.00° fixtur s source vertice v	1030 1060 15 1530 1550 200 2060 300 3060 400 4060 4060 4060 4060 4060 50 400 400 400 50 400 400 50 50 50 50 50 50 50 50 50	5 MOUNTIN SURFACE Wall, Celling, or Wall, Celling, or 3G ANSI 136.3 EXTENDED, X = Specify 6*, 1 STAKE 6 LENGTH 12.00" 48.00" 7 VOLTAGE 120V 277V 7	NTING CE Illing, or Ground 136.31 roted DED ARM fy 6*, 12* or 18" TH	nd d 18"	EX S	SM SM KA-X STM 12 48 120 2277<	CONTROL O-10V DIMMIN O-10V dims down to toy others) DMX DIMMIN Default factory setting Futures are not pre-o factory. A DMXCA1 fixture resolution and separately. DALI Controls and Dali bu:	VG (1%) 1% with compared g is DMX System iddressed or lab tool is required f addressing, Mu rol options below from the factory · ution Kit is requili See control optic quired. Must be	DI tible controls DMXD. I Resolution eled at the or on-site st be ordered v. with default ed. Must be ns below.
s intended for a 6.00° fixtur e source ze upuigent, r FEED ze upuigent, ver FEED ze upuigent, r FEED ze DOWNLIGHT, R FEED ze DOWNLIGHT, VER FEED ze DOWNLIGHT, VER FEED	10 1030 1060 15 1530 1560 200 2060 2060 300 2060 300 2060 300 2060 300 2060 300 2060 300 2060 300 2060 300 300 2060 300 300 300 300 300 300 300	SURFACE Woll, Ceiling, or 3G ANSI 136.3 EXTENDED, X = Specify 6°, 1 STAKE (a) LENGTH 12.00" 48.00" 120V 277V	CE Iling, or Ground Il36.31 rated DED ARM Ify 6 [*] , 12 [*] or 18"	nd d 1 18"	EX S	<u>SM</u> (A-X STM <u>12</u> 48 120 277 [3	O-IOV DIMMIN O-IOV dims down to (by others) DMX DIMMIN Default factory setting factory A DMXCAT I fixtures are not pre-o- factory A DMXCAT I fixture resolution of pre-o- factory A DMXCAT I fixtures are shipped f addressed channel 1 A CDS/RDM Distrib- ordered separately. S DMX controls are rec separately. DALI Controls and Dali but	VG (1%) 1% with compa G g is DMX System raddressed or lab tool is required 1 addressing. Mu rol options below from the factory · ution Kit is required See control optic quired. Must be	DI tible controls DMXDI resolution reled at the or on-site st be ordered v. with default ed. Must be ns below.
° ZE UPLIGHT, R FEED ZE UPLIGHT, VER FEED ZE DOWNLIGHT, R FEED ZE DOWNLIGHT, VER FEED	1030 1060 15 1530 200 2060 300 3060 400 4060 4060 4060 4060 4060 408 408 408 408 408 408 408 40	EXTENDED , X = Specify 6 ⁴ , 1 STAKE 6 LENGTH 12.00° 48.00° 7 VOLTAGE 120V 277V	DED ARM (fy 6", 12" or 18"	<u>1</u> 18" 	EX S	KA-X STM 12 48 120 277	DMX DIMMIN Default factory setting Futures are not present factory. A DMXCAT fixture resolution and separately. See contr A CDS/RDM Distrib ordered separately. DMX controls are rec separately. DALI Controls and Dali but	G g is DMX System tadressed or lab tool is required f addressing. Mu rol options beloo from the factory v ution Kit is require See control optio quired. Must be	DMXD I Resolution reled at the or on-site vst be ordered with default ed. Must be vns below.
° ZE UPLIGHT, R FEED ZE UPLIGHT, VER FEED ZE DOWNLIGHT, R FEED ZE DOWNLIGHT, VER FEED	1060 15 1530 200 2060 300 3060 400 4060 4060 4060 4060 4060 408 408 408 408 408 408 408 40	X = Specify 6*, 1 STAKE 6 LENGTH 12.00" 48.00" 7 VOLTAGE 120V 277V	ify 6*, 12* or 18"	18"	S	STM 12 48 120 277	Default factory setting Futures are not present factory. A DMXCAT fixture resolution and separately. See contr Futures are shipped f addressed channel 1 A CDS/RDM Distribu- ordered separately. DMX controls are rec separately. DALI Controls and Dali bu:	g is DMX Systen addressed or lak tool is required f addressing. Mu rol options below from the factory ution Kit is requir See control optic quired. Must be	n Resolution reled at the or on-site ist be ordered v. with default ed. Must be ins below.
° ZE UPLIGHT, R FEED ZE UPLIGHT, VER FEED ZE DOWNLIGHT, R FEED ZE DOWNLIGHT, VER FEED	15 1530 1560 20 2060 30 3060 40 4060 60 100 ASUL ASDL , ASDR	STAKE 6 LENGTH 12.00" 48.00" 7 VOLTAGE 120V 277V	IGE			STM 12 48 120 277	hadres die not pie-o factory. A DMXCAT i fixture resolution and separately. See contr Rotures are shipped f addressed channel 1 A CDS/RDM Distrib ordered separately. DMX controls are rec separately. DALI Controls and Dali bu:	aaressea or iat tool is required 1 addressing. Mu rol options below from the factory ution Kit is requir See control optic quired. Must be	elea at the or on-site ist be ordered with default ed. Must be ins below.
° ZE UPLIGHT, R FEED ZE UPLIGHT, VER FEED ZE DOWNLIGHT, R FEED ZE DOWNLIGHT, VER FEED	1530 1560 2060 300 400 4060 400 40	 [6] LENGTH 12.00" 48.00" [7] VOLTAGE 120V 277V 	GE			12 48 120 277	Insure resolution and separately. See contr Fixtures are shipped f addressed channel 1 A CDS/RMM Distrib ordered separately. DMX controls are rec separately. DALI Controls and Dali bus	rol options belov from the factory ution Kit is requir See control optic quired. Must be	with default ed. Must be ins below.
° ZE UPLIGHT, R FEED ZE UPLIGHT, VER FEED ZE DOWNLIGHT, ZE DOWNLIGHT, VER FEED	1560 I 2060 300 30060 40 4060 60 100 ASUL ASUR ASDL ; ASDR	6 LENGTH 12.00" 48.00" 48.00" 120V 120V 277V	IGE			12 48 120 277	Fixtures are shipped f addressed channel 1 A CDS/RDM Distribio ordered separately. S DMX controls are rec separately. DALL Controls and Dali bus	trom the factory ution Kit is requi See control optic quired. Must be	with default ed. Must be vns below.
° ZE UPLIGHT, R FEED ZE UPLIGHT, VER FEED ZE DOWNLIGHT, R FEED ZE DOWNLIGHT, VER FEED	20 2060 30 40 4060 60 100 ASUL ASUR ASUR ASDL	12.00" 48.00" 20V 277V	GE		2	12 48 120 277	A CDS/RDM Distribi ordered separately. S DMX controls are rec separately. DALI Controls and Dali bus	ution Kit is requi See control optie quired. Must be	red. Must be ons below.
° ZE UPLIGHT, R FEED ZE UPLIGHT, VER FEED ZE DOWNLIGHT, R FEED ZE DOWNLIGHT, VER FEED	2060 30 40 4060 60 100 ASUL ASUR ASDL ; ASDR	48.00" [Z] VOLTAGE 120V 277V	GE			48 120 277	DMX controls are rea separately. DALI Controls and Dali bus	quired. Must be	
° ZE UPLIGHT, R FEED ZE UPLIGHT, VER FEED ZE DOWNLIGHT, R FEED ZE DOWNLIGHT, VER FEED	30 3060 40 4060 60 100 ASUL ASUR ASUR ASDL ; ASDR	[7] VOLTAGE 120V 277V	GE		2	120 277	DALI Controls and Dali bus		ordered
° ZE UPLIGHT, R FEED ZE UPLIGHT, VER FEED ZE DOWNLIGHT, R FEED ZE DOWNLIGHT, VER FEED	3060 400 4060 60 100 ASUL ASUR ASUR ; ASDR	277V			2	120 277	Controls and Dali bus		DA
° ZE UPLIGHT, R FEED ZE UPLIGHT, VER FEED ZE DOWNLIGHT, R FEED ZE DOWNLIGHT, VER FEED	40 4060 60 100 ASUL ASUR ASUR	277V			2	<u>120</u> 277		s by others.	
° ZE UPLIGHT, R FEED ZE UPLIGHT, VER FEED ZE DOWNLIGHT, ZE DOWNLIGHT, VER FEED	4060 60 100 ASUL ASUR ASDL ; ASDR	<u>2// N</u>			2	<u> </u>			
° ZE UPLIGHT, R FEED ZE UPLIGHT, VER FEED ZE DOWNLIGHT, R FEED ZE DOWNLIGHT, VER FEED	60 100 ASUL ASUR ASDL ; ASDR						FINISH		
° ZE UPLIGHT, R FEED VER FEED ZE DOWNLIGHT, R FEED ZE DOWNLIGHT, VER FEED	100 ASUL ASUR ASDL ; ASDR						METALLIC GRA	<u>Y</u>	M
ZE UPLIGHT, R FEED VER FEED ZE DOWNLIGHT, R FEED ZE DOWNLIGHT, VER FEED	ASUL ASUR ASDL ; ASDR						CUSTOM COL	.OR ustom color - ar	C
R FEED JZE UPLIGHT, VER FEED ZE DOWNLIGHT, R FEED JZE DOWNLIGHT, VER FEED	ASUR ASDL ; ASDR						charges will apply	00001-00	dilional
ZE UPLIGHT, VER FEED ZE DOWNLIGHT, R FEED ZE DOWNLIGHT, VER FEED	ASUR ASDL , ASDR								
ze downlight, R Feed Ze downlight, Ver Feed	ASDL					10	OPTIONS		
ze downlight, Ver feed	, ASDR						HIGH CRI 90+		HC
ZE DOWNLIGHT, VER FEED	r, ASDR							nd JUK	
VER FEED							LOUVER Ships separate	a from the fixture	
d Wash: <u>See page 3 for det</u>	details.								
JIRED FOR DMX DIM			ER CABLES -	S - REQU	UIRED			See pag	e 10 for deta LC LC -
	DIMMING CDS-RDM	EEADER CA <u>5.0 FT LEAD</u> 10.0 FT LEAI	leader cae Fleader ca	CABLE				OPTIONI	1
	DIMMING CDS-RDM	LEADER CA 5.0 FT LEAD 10.0 FT LEAD	LEADER CAL		DLLS II OK	K LIINL V	OLIAGE ONLI -	OFICINA	E 11808
NG TOOL D	DIMMING CDS-RDM DMXCAT	G LEADER CA 5.0 FT LEAD 10.0 FT LEAD EXTERIOR J 1.0 FT LUME	LEADER CAL T LEADER CA TOR JUMPE	PER CAB					EL11898
NG TOOL D. plogy for communication with tion and addressing.	DIMMING CDS-RDM DMXCAT with the	G LEADER CA <u>5.0 FT LEAD</u> 10.0 FT LEAD 10.0 FT LEAD 10.0 FT LEAD <u>1.0 FT JUMF</u> 2.0 FT JUMF	LEADER CAI T LEADER CA IOR JUMPE JUMPER CA JUMPER CA	PER CAB CABLE CABLE	-				EL11898
NG TOOL D. Dogy for communication with tion and addressing.	DMMING CDS-RDM DMXCAT with the	G LEADER CA 5.0 FT LEAD 10.0 FT LEAD 10.0 FT LEAD 10.0 FT LEAD 1 EXTERIOR J 1.0 FT JUMF 2.0 FT JUMF 5.0 FT JUMF 5.0 FT JUMF	LEADER CAI T LEADER CA IOR JUMPER CA JUMPER CA JUMPER CA	PER CAB CABLE CABLE CABLE	· · · · · · · · · · · · · · · · · · ·				EL11898-
NG TOOL D. Jogy for communication with tion and addressing.	DIMMING CDS-RDM DMXCAT with the	G LEADER CA 5.0 FT LEAD 10.0 FT LEAD 10.0 FT LEAD 10.0 FT LEAD 1 EXTERIOR J 1.0 FT JUMF 2.0 FT JUMF 5.0 FT JUMP 250 FT JUMP	LEADER CAI T LEADER CA IOR JUMPER JUMPER CA JUMPER CA JUMPER CA T JUMPER CA	PER CAB CABLE CABLE CABLE CABLE CABLE					
NG TOOL D	DIMMING CDS-RDM DMXCAT with the	G LEADER C4 5.0 FT LEAD 10.0 FT LEAI 10.0 FT LEAI 10.0 FT LEAI 1 EXTERIOR J 1 0.0 FT JUMP 2.0 FT JUMP	LEADER CAI T LEADER CA IOR JUMPE JUMPER CA	PER CAB	-				EL 118 EL 118 EL 1189 EL 1189
JIRE				ED FOR DMX DIMMING CDS-RDM 5.0 FT LEADER CABLE	ED FOR DMX DIMMING CDS-RDM 5.0 FT LEADER CABLE 10.0 FT LEADER CABLE EXTERIOR JUMPER CA	ED FOR DMX DIMMING LEADER CABLES - REQUIRED CDS-RDM 5.0 FT LEADER CABLE 10.0 FT LEADER CABLE 10.0 FT LEADER CABLE TOOL DMXCAT For communication with the and addressing. 1.0 FT JUMPER CABLE 2.0 FT JUMPER CABLE 2.0 FT JUMPER CABLE	ED FOR DMX DIMMING LEADER CABLES - REQUIRED CDS-RDM 5.0 FT LEADER CABLE 10.0 FT LEADER CABLE 10.0 FT LEADER CABLES (FOR LINE V TOOL DMXCAT /for communication with the and addressing. 1.0 FT JUMPER CABLE 2.0 FT JUMPER CABLE 5.0 FT JUMPER CABLE 5.0 FT JUMPER CABLE 5.0 FT JUMPER CABLE	ED FOR DMX DIMMING LEADER CABLES - REQUIRED CDS-RDM 5.0 FT LEADER CABLE 10.0 FT LEADER CABLE 10.0 FT LEADER CABLES (FOR LINE VOLTAGE ONLY) rfor communication with the and addressing. 1.0 FT JUMPER CABLE 2.0 FT JUMPER CABLE 5.0 FT JUMPER CABLE 10.0 FT JUMPER CABLE 1.0 FT JUMPER CABLE	ED FOR DMX DIMMING LEADER CABLES - REQUIRED See page CDS-RDM 5.0 FT LEADER CABLE 10.0 FT LEADER CABLE TOOL DMXCAT EXTERIOR JUMPER CABLES (FOR LINE VOLTAGE ONLY) - OPTIONA 1.0 FT JUMPER CABLE 2.0 FT JUMPER CABLE 2.0 FT JUMPER CABLE 1.0 FT JUMPER CABLE 1.0 FT JUMPER CABLE 1.0 FT JUMPER CABLE 2.0 FT JUMPER CABLE 1.0 FT JUMPER CABLE 1.0 FT JUMPER CABLE

PDP & REZONING SUBMITTAL LIGHTING CUTSHEETS | E 2.10

02.07.2025

NOTICE: DUTY OF COOPERATION RELEASE OF THESE DOCUMENTS CONTEMPLATES FURTHER COOPERATION AMONG THE OWNER, HIS CONTRACTOR, AND THE ARCHITECT. DESIGN AND CONSTRUCTION ARE COMPLEX. ALTHOUGH THE ARCHITECT AND HIS CONSULTANTS HAVE PERFORMED THEIR SERVICES WITH DUE CARE AND DILIGENCE, THEY CANNOT GUARANTEE PERFECTION. COMMUNICATION IS IMPERFECT AND EVERY CONTINGENCY CANNOT BE ANTICIPATED. ANY ERRORS, OMISSIONS, OR DISCREPANCY DISCOVERED BY THE USE OF THESE DOCUMENTS SHALL BE REPORTED IMMEDIATELY TO THE ARCHITECT. FAILURE TO NOTIFY THE ARCHITECT COMPOUNDS MISUNDERSTANDING AND INCREASES CONSTRUCTION COSTS. A FAILURE TO COOPERATE BY SIMPLE MISSIONS. OR DISCREPANCY DISCOVERED BY THE USE OF THESE DOCUMENTS SHALL BE REPORTED IMMEDIATELY TO THE ARCHITECT. NOTICE TO THE ARCHITECT SHALL RELIEVE THE ARCHITECT FROM RESPONSIBILITY FOR ALL CONSEQUENCES ARRIVING OUT OF SUCH CHANGES. THE DESIGNS AND PLANS ARE COPYRIGHT AND ARE NOT TO BE USED OR REPRODUCED WHOLLY OR IN PART WITHOUT THE WRITTEN PERMISSION OF SSARCHITECTS. THE DRAWINGS AND SPECIFICATIONS ARE INSTRUMENTS OF SERVICE AND SHALL REMAIN THE PROPERTY OF THE ARCHITECT WHETHER THE PROJECT FOR WHICH THEY ARE MADE IS EXECUTED OR NOT. COPYRIGHT SSARCHITECTS. DO NOT SCALE FROM DRAWING. VERIFY ALL DIMENSIONS ON SITE.

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

MAIKER BOYERS LIGHTING CUTSHEETS

Ramirez, Johnson, & A ssociates 3301 Lawrence SL Ste 2 Denver, CO 80205 720,598,0774 www.tja-ong.com CONSULTANT No.

notice. All values are o

kl_ur20post_edge-lit_spec_R04

02.07.2025 LIGHTING CUTSHEETS | E 2.20

es Color Temperature Nominal Lumen V 4LW 27/ 2700 K 02 250 lumen 30/ 3000 K 05 500 lumen 35/ 3500 K 07 750 lumen 40/ 4000 K 10 1000 lume 50/ 5000 K 15 1500 lume 20 2000 lume 27 250 lume	alues Aperture & Trim Color Is AR Clear Is PR Pewter Is WTR Wheat	Trim Style (blank) Self-flanged	Finish Voltage
30 3000 lume 35 3500 lume	nns GR Gold Inns WR ¹ White Inns BR ¹ Black Inns Inns Inns Inns Inns Inns Inns Inns	FL Flangeless	LS Semi-specular myoli LD Matte diffuse 120 LS Specular 277 347 ^{2,3}
 er⁴ 0 -10V driver dims to 10% 0 -10V driver dims to 1% 0 eldoLED 0-10V ECOdrive. Linear dimming to 10% min. eldoLED 0-10V SOLOdrive. Logarithmic dimming to <1%. B³ eldoLED SOLOdrive DALI. Logarithmic dimming to <1%. B³ eldoLED POWERdrive DMX with RDM (remote device management). Square Law dimming to <1%. Minimum 1000 lumens. Includes termination resistor. Refer to DMXR Manual. D³ Lutron Ecosystem digital Hi-Lume 1% soft-on, fade to black 	Control Interface NLT [#] NLTER ^{2.6.10} nLight [®] dimming pack emergency circuit NLTAIRER ^{2.10,14} NLTAIRER ^{2.10,14} NLTAIRER ^{2.10,14} NLTAIRER ^{2.10,14} NLTAIRER ^{2.10} nLight [®] AIR enabled w dimming pack. Contro emergency circuit nLight [®] AIR Dimming F Controls. Controls fixtu emergency circuit with options.	Options controls SF controls TRB1 [®] ireless ELR [®] is fixture on E10WCPR [®] Pack Wireless R80 ¹¹ battery pack R81 ¹ RRL	Single fuse. Specify 120V or 277V. White painted flange Black painted flange Emergency battery pack with remote test switch Emergency battery pack with self-diagnostics, remote test switch Emergency battery pack, 10W Constant Power, (Title 20 compliant with remote test switch nLight® Lumen Compensation Bodine generator transfer device. Specify 120V 277V. High CRI (90+) Chicago plenum. Specify 120V or 277V for 5000 and above. RELOC®-ready luminaire connectors enable a simp and consistent factory installed option across all ABL luminaire brands. Refer to <u>RRL</u> for complete nomenclature.
FSSORIES — order as senarate catalog numbers (sbin	ned senarately)		
BC 0-10V wallbox dimmer. Refer to I <u>SD-BC</u> .			
Supplied with factory installed step down transform Refer to <u>TECH-240</u> for compatible dimmers. Not available with nLight [®] and XPoint options. Must Specify voltage. For use with different reflector finish only (i.e. AR, F options). Not available with WR (white reflector), or For use with different reflector finish only (i.e. AR, F options). Not available with BR (black reflector), or For use with different reflector finish only (i.e. AR, F options). Not available with BR (black reflector), or For use with different reflector finish only (i.e. AR, F options). Not available with BR (black reflector), or For use with different reflector finish only (i.e. AR, F options). Not available with BR (black reflector), or W 2 of 8 COTHAM ARCHITECTURAL DO © 2014-2023 Acuity Brands COTHAM ARCHITECTURAL DO © 2014-2023 Acuity Brands COTHAM ARCHITECTURAL AREA/SITE DERING GUIDE LOG # LED Engine CCT O Quro Type 2M and 3 3 K7 2000K 70.0	er. hot feed. 11. Fixture begi 12. Battery paci 13. Not availabl PR, WTR, GR rEL option. 14. When comb R, WTR, GR rL option. 14. When comb R, WTR, GR WNLIGHTING I 1400 Lester Road Convers, GA 300 Lighting Inc. All Rights Reserved. Rev. 05/03/23 DATE: TYPE: CATALO DIstribution Rev. 05/03/2	Ins at 80% light level. Must be k not available. 2500 lumen e DALI or DMX drivers. Not ined with the EZ1, EZ10, or las a normal power sensing of EM emergency options. IZ1 P 800-705-SERV (7378) g Specifications subject to change LOCATION: PROJECT: G #: Example Voltage	e: UR20-96L-50-3K8-3-UNV-FMSA33-BLS-71
Sound Implementation Sitk Stock, Note 96L-30 3,000 lm 3K8 3000K, 90 (90 (96L-30 3,000 lm 3K9 3000K, 90 (90 (96L-70 7,000 lm 3K9 3000 K, 90 (90 (96L-30 3,000 lm 3K9 3000K, 90 (96L-70 7,000 lm 3K9 3000 K, 90 (96L-70 7,000 lm 3K9 3000 K, 90 (96L-70 7,000 lm 15K7 5000K, 70 (5K7 5000K, 70 (Consult factory f 5000 K, 70 (Consult factory f 192L-45 5,000 lm 192L-30 3,000 lm 192L-35 15,000 lm 192L-315 10,000 lm	RI 3 ^s Type III Short RI 3 ^s Type III Short RI 5W ^s Type V Wide RI RI CRI CRIS	UNV 120-27/V 347 347V 480 480V	 FM34 Flush mt 30° to 4.0° OD pole, 3° Rule base FM44 Flush mt 30° to 4.0° OD pole, 4° fixture base PT23 3° Post Top mount for 2-3/8° OD x 4° Long Tenon PT24 4° Post Top mount for 2-3/8° OD x 4° Long Tenon PT34 4° Post Top mount for 2-7/8° OD x 4° Long Tenon PT34 3° Dost Top Flush Mount 3.0° OD Pole, 3° fixture base FMSA43 Solo Arm Post Top Flush Mount 3.0° OD Pole, 3° fixture base FMSA44 Solo Arm Post Top Flush Mount 3.6° to 4.0° OD Pole, 4° fixture base PTSA23 3° Solo Arm Post Top Mount for 2-3/8° OD x 4° Long Tenon PTSA24 4° Solo Arm Post Top Mount for 2-3/8° OD x 4° Long Tenon PTSA34 4° Solo Arm Post Top Mount for 2-7/8° OD x 4° Long Tenon
re Finish Control Options Black Gloss Smooth 7PR-TL 7 pin PCR v Black Matte Textured 7PR-SC 7 pin PCR v Dark Bronze Gloss Smooth 7PR 7 pin PCR, v Dark Bronze Matte Textured AD-01 ² AstroDIM: 5 Light Grey Gloss Smooth AD-03 ² AstroDIM: 5 Light Grey Matte Textured AD-04 ² AstroDIM: 5 Platinum Silver Gloss Smooth AD-04 ² AstroDIM: 5 Platinum Silver Gloss Smooth Bluetooth F Bluetooth F	Vith twist lock photocontrol vith shorting cap vireless control enabled Vireless control enabled Vireless control enabled Vireless Radio Module NXRM2 and rogramming, without Sensor cc. Sensor for up to 40' MH, 120-480V	Uptions F Single Fuse DF Double Fuse TPL Tamper Proof Latcl WBFM3 Wall Bracket Arm f FM33 or FMSA33 WBFM4 Wall Bracket Arm f FM44 or FMSA44 TAFM3 * Twin Arm mount fo FM33 or FMSA33 TAFM4 * Twin Arm mount fo FM44 or FMSA44	Control Accessories WIR-RME-L LightGRID+™ External Fixture Module NXOFM1R1D-UNV NX 7-Pin Twist-Lock® with NX Networked Wireless Radio, Integral Automatic Dimming Photocell, Integral Single Pole Relay with Dimming, and Bluetooth Programming
White Gloss Smooth WSP-40F Dimming O White Matte Textured Option Custom Color			

A" General Illumination Lensed W

system connectors must be used to form Efficacy Range (LPW) 108–112 patterns. The length of each outside or inside Illuminated corner is 12" Rated Life (Hours) L90:>60,000	 Refer to NX Integrated Controls Reference Table for Functionality of Options. NX Sensors with Bluetooth, BLE, provides remote commission only. 	gasket on back side of plate to firmly seal side, thermistor provides protection for the EFFICACY RANGE (LPW) 75–116 fixture to wall surface, forbidding entry of sustainable life of LED module and electronic WEIGHT Refer to page 6	Sustain Building Material Mount Ghost Fascia option allows the Cypher to blend seamlessly into the building architecture by matching the finish of the architectural background. See page 6 for dimensions and contact factory for additional information. Custom material provided by others.
 PT Mounting: Continuous spackle trim with beaded edge welded to housing. Spackle trim allows plaster coat up to fixture edge for clean ceiling appearance LG/NG/SS Mounting: Side rails provide continuous mounting, lateral spacing between T-bars and allows clearance for T-bar supporting wire. For Tegular grid mount, fixture will sit level with the T-bar DW Mounting: Side rails allow installation into drywall slot. Visible flange is located on all 4 sides of fixture Illuminated corners available in 90°, 120°, 135°. One piece construction, ready to install, with diffusers that match adjoining fixtures. Corner 	Control Options 4 Notes: NX Networked – Wired Notes: NXESM NX Wired Dual RJ45 SmartPORTS, without Sensor ^{15, 4} Notes: NXESM NX Wired Dual RJ45 SmartPORTS and Integral NXSMP2-SMI PIR Occupancy Sensor with Automatic Dimming Photocell and Bluetooth® Programming ^{15, 44} . Must be ordered with AD. NXMSM NX Networked Wireless Enabled Integral NXSMP2-SMI PIR Occupancy Sensor with Automatic Dimming Photocell and Bluetooth® Programming ^{15, 44} . Must be ordered with AD. NXWSM NX Networked Wireless Rabie of Integral NXSMP2-SMI PIR Occupancy with Automatic Dimming Photocell and Bluetooth® Programming ^{15, 44} . Must be ordered with DOS Tolver option; excludes 2' lengths and patterns. NXW NX Networked Wireless Rabie of Integral NXSMP2-SMI PIR Occupancy with Automatic Dimming Photocell and Bluetooth® Programming without Sensor ^{15, 44} Must be ordered with DOS Tolver option; excludes 2' lengths and patterns. Sensore Sensore Sensore Must be ordered with 2230TD or 2765T option Sensore Eff-10W battery powered drive; Provides a minimum of 90 minutes of emergency lighting. Inverter-compatible. Provided by others. Sol Occupancy Sensor Required. Enter quantity. 2501 = 2 daylight sensors/row Sol 1 Only applicable when specified with Emergency/Nightlight. Sol Occupancy Sensor Required. Enter quantity. 2501 = 2 occupancy sensors/row 1 Only applicable when specified with Emer	 electrical features Optical lenses is clear injection molded PMMA acrylic Optical array is recessed in order to shield each LED optic across the length of the aperture Optical array is sealed for IP66 rating Luminaires have integral surge protection that shall be UL recognized and have a surge current rating of 10,000 Amps using the industry standard 8/20USec wave and surge rating of 372.J. Surge protection device shall be wired in series Drivers are 0-10V dimming control with a dimming range of 100%-10%. Drivers are UL. listed. All luminaires shall accept 120- 277 volt input and have integral surge protection."Thermal Shield", secondary Mounting plate features a one-piece EPDM 	CC 3 Custom Color Notes: 1 Consult factory for custom distributions. See Distribution Matrix on page 4 restrictions 2 PB distribution is available for 90/10 and 70/10/10/10 models only. Not all combinations are recommended. See Distribution Matrix on page 2 for restrictions. 3 Consult factory for custom color, marine and corrosive finish 4 R6BW and LFSW luminous fronts are only available with open, four square and perforated fascia panels 5 Flat and Radius Fascia forms only. Painted panels by default match base housing finish/color. Consult factory for custom panel finishes. 6 Luminous front is required to select the Open Panel and 4-Square Panel fascia panels. 7 Battery Backup not available with Triangle and Rounde Edge Fascia Forms. 8 Origeting Building Matrix Educe larget available with triangle and Rounde Edge Fascia Forms.
Installs from below via magnetic interface direct hemispheres can be independently specified • End caps overlap diffuser at each fixture end to climate gaps and LED visibility LED boards and drivers can be accessed and removed from fixture, while installed • 2 SDCM color consistency, 90 CRI • Entire LED module can be removed and replaced • IC (1 Circuit) Fixture wired for a single circuit • IC Rated • SOF: Soft diffuse acrylic lens • 1C (1 Circuit) Fixture wired for a single circuit • IBEW • AF of L • ASYM: Asymmetric Highly transmissive diffuse acrylic lens with linear prisms • Emergency Battery: 10W battery powered driver. Provides a minimum of 90 minutes of emergency lighting. Inverter-Compatible. Provided by others. Available in: 6'- EF L or R: D030 through D100; 8'- EF Full: D030 through D100, Available with SOF, ASYM, BAT downlight diffusers. Test switch located in lens. For rows where the battery fixture is in the middle of a row, the test switch will be • Emergency Battery is in the enddle of a row, the test switch will be	Nightlight Energency Nightlight Energency Nightlight Circuit, Enter quantity, 2NL = 2 nightlight circuits/row Energency Will No Thru Wire Nightlight Circuits/row Finangency Will No Thru Wire Nightlight Circuits/row Will No Thru Wire Battery Pack. Enter quantity, 2NL = 2 emergency batteries/row. (CEC Title 20 Compliant)* Will No Thru Wire Wing Thru Wiring Only Patterns 4-9 Control Illuminated 90° Corner Circuits/row Chicago Environmental Air Modification	 Luminaire housing is free of any visible heat fins, hardware or fasteners Bracketry and hardware is stainless steel Luminaire finish consist of a five stage pretreatment regimen with a polymer primer sealer, oven dry off, and top coated with a thermoset super TGIC polyester powder coat finish Luminaire finish meets the AAMA 605.2 performance specification which includes passing a 3000 hour salt spray test for corrosion resistance LED/OPTICS LEDS are mounted to a metal printed circuit board assembly (MCPCB) with a uniform conformal coating over the panel surface and electronic components 	Base Housing Finish Fascia Form 1 Luminous Front 4 Fascia Panel 5 Control Options Options BLS Black Gloss Smooth F Flat Blank Standard None FPP Full Panel Painted PCU Universal Button Photocell -20° C Standard None FPS Full Panel Painted PCU Universal Button PCU Universal Button PCU Universal Button PCU SF Single Fuse (120) DBS Dark Bronze Matte Textured R Radius/Curved RGBW RGBW Luminous Front FPC Full Panel Copper PCU Universal Button PCV SF Single Fuse (120) DBS Dark Bronze Matte Textured C Circle/Curved CS Sca Circle/Curved CS QPs © Open Panel Painted OPs © Open Panel Copper OPc © Open Panel Copper QPs © 4-Square Panel Painted ScB ScB Surface Conduit QFS Patinum Silver Gloss Smooth CT Cylinder Tail CBM ° Custom Building Material Mount Ghost Fascia Mount Ghost Fascia PF A-Square Panel Panel Cop
 Weight Weight Weight Weight Weight 	Image: string	 Image: Second Sec	Series-Output (Base) CCT-CRI Model (Light Engine) ¹ Main Distribution (Down) Secondary Distribution (Up, Sides) Voltage CY1-15 15W, 1500 nominal lumens 27K8 2700K, 80CRI 1 DownLight Only 1 IES Type I 2 IES Type I 2 IES Type II 3 IES Type II 3 IES Type II 3 IES Type II 3 IES Type II 4 IES Type II 5 IES Type II 4 IES Type II 4 IES Type II 1 IES Type II 1<
MOD [®] 2 LED RECESSED DIRECT MOD [®] 2 LED RECESSED DIRECT NOD [®] X FEATURES • Variable Intensity technology provides a range of specifiable outputs and resulting fixture wattages • 2 SDCM color consistency • End cap design eliminates visible diffuser seams/gaps • TriGain [®] Technology provides superior color quality without compromising efficacy. The 2L-R-D series delivers 90 CRI at 112 LPW	MOD [®] 2 LED RECESSED DIRECT CREW Highlighting = 10 Day Quick Ship Program CREATING GUIDE Example: 2L-DW-D-83-08-SOF-C1-27K9-D030-D01-IC-UNV CATALOG # 2L Series Ceiling Type ¹ Thure Distribution D Direct D DIR D DIR D DIR D DIR D DIR D DIR D DIR D DIR D D	ARCHITECTURAL AREA/SITE FEATURES • Integral Battery Backup Option • 360° Light Distribution • RGBW or Static White Luminous Front Option • Multiple Fascia Options and Finishes • 4G Vibration Tested	ARCHITECTURAL AREA/SITE ORDERING GUIDE Example: CY1-15-3K7-1-2D-UNV-BLS-F-RGBW-FPP-P CATALOG #
LITECONTROL making light work" TYPE: LOCATION: 2L-R-D L1 & L2 TYPE: PROJECT:	LITECONTROL making light work" DATE: LOCATION: TYPE: PROJECT: 2L-R-D CATALOG #:	LIGHTING* DATE: LOCATION: TYPES TYPE: PROJECT: W3 & W4	LIGHTING* DATE: LOCATION: TYPE: PROJECT: CY1 CATALOG #:
Ang.com 0) 526.2588Headquarters, East Manufacturing Facility 44 Harbor Park DriveSouth East Manufacturing Facility 1600 Distribution CtCentral Manufacturing Facility 1700 South J Elmer Freeway, Ste 100 Cedar Hill, TX 75104West Manufacturing Facility 1750 S Archibald Ave Ontario, CA 917610) 526.2588Port Washington, NY 11050Lithia Springs, GA 30122Cedar Hill, TX 75104Ontario, CA 91761(AC Lighting retains the right to modify the design of our products at any time as part of the company's continuous improvement program.NOV 20241	One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.lithonia.com WDGE1 LED © 2019-2024 Acuity Brands Lighting, Inc. All rights reserved. Rev. 08/07/24	One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.lithonia.com WDGE1 LED © 2019-2024 Acuity Brands Lighting, Inc. All rights reserved. Rev. 08/07/24	waclighting.com Phone (800) 526.2588 Fax (800) 526.2585 Headquarters/Eastern Distribution Center 44 Harbor Park Drive Port Washington, NY 11050 WAC Lighting retains the right to modify the design of our products at any time as part of the company's continuous improvement program. January 2025
atible with MLV dimmers for adjustable brightness Listed, certified safe for outdoor wet locations asting with a rated life of 50,000 hours bilized to resist sun damage, ensuring long-lasting durability in outdoor use. NG NUMBER Color Temp Finish 12 1 foot 52 5 feet 02 10 feet 27 2700K 30 3000K WT White 23 35 feet 27 2700K 30 3000K WT White 8012-30WT	90X 40U0A 50K1 5000K 90K 5000K 90K 3/8inch Architectural wall spacer 4 PBBW Surface-mounted back box (top, left, right conduit entry) Use when there is no junction box available.4 0ptions Finish E4WH Emergency battery backup, Certified in CA Title 20 MAEDBS (4W, 0°C min) ⁵ PE Photocell, Button Type ⁴ DS Dual switching (comes with 2 drivers and 2 light engines; see page 3 for details) ⁷ DMG 0-10V dimming wires pulled outside fixture (for use with an external control, ordered separately) BCE Bottom conduit entry for back box (PBBW), Total of 4 entry points. DSLE Dual Switching (1 Drive, 2 Light Engines) CEC Coastal Construction ⁴	Lumen Ambient Temperature (LAT) MultipliersUse these factors to determine relative lumen output for average ambient temperatures from 0-40°C (32-104°F). Anbient Lumen Multiplier0°C32°F1.0310°C50°F1.0220°C68°F1.0125°C77°F1.0030°C86°F0.9940°C104°F0.98	
Rated Life: 50,000 hours K warm white tones. Safe for wet locations and long-lasting with a 50,000- Rated Life: 50,000 hours Max Run: Refer to Wiring Diagram page Operating Temp: 4°F to 104°F (-20°C to 40°C) at relative humidity 95%	No. Po P1 P2 P3 P4 P5 P6 WDGE1 LED Visual Comfort 10W 18W Standalone / nLight 1,200 2,000 <td< td=""><td>Electrical Load Lumen Multiplier for 90CRI Po Y 0.060 0.035 0.030 0.026 0.026 0.036 0.038 0.026 0.036 0.038 0.026 0.035 0.038 0.026 0.044 0.038 0.036 0.038 0.046 0.038 0.038 0.036 0.037 0.064 0.056</td><td>Listed Construction Aluminum body with glass lens FINISHES: Black LINE DRAWING: 5"</td></td<>	Electrical Load Lumen Multiplier for 90CRI Po Y 0.060 0.035 0.030 0.026 0.026 0.036 0.038 0.026 0.036 0.038 0.026 0.035 0.038 0.026 0.044 0.038 0.036 0.038 0.046 0.038 0.038 0.036 0.037 0.064 0.056	Listed Construction Aluminum body with glass lens FINISHES: Black LINE DRAWING: 5"
Image: Instant sections	Weight: (without options) 9 lbs environment. The compact size of WDGE1, with its integrated emergency battery backup option, makes it an ideal over-the-door wall-mounted lighting solution. Image: Select integrated by a shaded background qualify for the Design Select program and ship in 15 days or less. To learn more about Design Select, visit www.acuitybrands.com/designselect. *See ordering tree for details WDGE LED Family Overview Muminaire Optics Standard EM, 0°C Cold EM, -20°C Sensor Approximate Lumens (4000K, 80CRI) Vuminaire Optics Standard EM, 0°C Cold EM, -20°C Sensor P0 P1 P2 P3 P4 P5 P6	within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here. Performance System Dist. Type 27K (2700K, 80 CR) 30K (3000K, 80 CR) 35K (3500K, 80 CR) 40K (4000K, 80 CR) 50K (5000K, 80 CR) Point Within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here. 100 K (4000K, 80 CR) 50K (5000K, 80 CR) 50K (5000K, 80 CR) Point Within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here. 100 K (4000K, 80 CR) 50K (5000K, 80 CR) 50K (5000K, 80 CR) Point Within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here. 100 K (4000K, 80 CR) 50K (5000K, 80 CR) 50K (5000K, 80 CR) Point VF 693 99 0 0 718 103 0 0 739 106 0 0 766 109 0 <	 S year warranty SPECIFICATIONS Color Temp: 3000K Input: 120 VAC,50/60Hz CRI 90 Dimming: ELV: 100-10% Rated Life: 50,000 Hours Mounting: Can be mounted on wall vertically or upside down Standards: ETL, CETL, IP65, Title 24 JA8 Compliant, ADA, Wet Location Listed
$\frac{1}{5}$	Depth (D1): 5.5" Depth (D2): 1.5" Height: 8" Width: 9"	Performance Data Lumen Output Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown,	Example: WS-W14911-BK For custom requests please contact customs@waclighting.com DESCRIPTION Cleverly designed, minimalistic lighting. FEATURES • ACLED driverless technology
Rated LED Tape	Architectural Wall Sconce	WDGE 3/8inch Architectural Wall Spacer (specify finish) 3 Not qualified for DLC. Not available with E4WH. WDGE 19B8W DD8XD U WDGE1 surface-mounted back box (specify finish) 4 For PBBW and AWS with CCE option, require an RFA. 5 E4WH not available with PE or DS. 6 Pe not available with DS. 7 DS is not available with PO.	Model & Size Color Temp Finish LED Watts LED Lumens Delivered Lumens Q WS-W14911 11" 3000K Q BK Black 7W 441 353

No.

NOTICE: DUTY OF COOPERATION RELEASE OF THESE DOCUMENTS CONTEMPLATES FURTHER COOPERATION AMONG THE OWNER, HIS CONTRACTOR, AND THE ARCHITECT. DESIGN AND CONSTRUCTION ARE COMPLEX. ALTHOUGH THE ARCHITECT AND HIS CONSULTANTS HAVE PERFORMED THEIR SERVICES WITH DUE CARE AND DILIGENCE, THEY CANNOT GUARANTEE PERFECTION. COMMUNICATION IS IMPERFECT AND EVERY CONTINGENCY CANNOT BE ANTICIPATED. ANY ERRORS, OMISSIONS, OR DISCREPANCY DISCOVERED BY THE USE OF THESE DOCUMENTS SHALL BE REPORTED IMMEDIATELY TO THE ARCHITECT. FAILURE TO NOTIFY THE ARCHITECT COMPOUNDS MISUNDERSTANDING AND INCREASES CONSTRUCTION COSTS. A FAILURE TO COOPERATE BY SIMPLE NOTICE TO THE ARCHITECT SHALL RELIEVE THE ARCHITECT FROM RESPONSIBILITY FOR ALL CONSEQUENCES ARRIVING OUT OF SUCH CHANGES. THE DESIGNS AND PLANS ARE COPYRIGHT AND ARE NOT TO BE USED OR REPRODUCED WHOLLY OR IN PART WITHOUT THE WRITTEN PERMISSION OF SSARCHITECTS. THE DRAWINGS AND SPECIFICATIONS ARE INSTRUMENTS OF SERVICE AND SHALL REMAIN THE PROPERTY OF THE ARCHITECT WHETHER THE PROJECT FOR WHICH THEY ARE MADE IS EXECUTED OR NOT. COPYRIGHT SSARCHITECTS. DO NOT SCALE FROM DRAWING. VERIFY ALL DIMENSIONS ON SITE.

2505 Walnut | Suite 200 | Boulder, CO 80302 303.442.4422 | www.sophersparn.com

MAIKER BOYERS LIGHTING CUTSHEETS

R amirez, J ohnson, & A ssociates 3301 Lawrence SL Ste 2 Denver, CO 80205 720,598,0774 www.rja-eng.com CONSULTANT

02.07.2025 E 2.30

PDP & REZONING SUBMITTAL LIGHTING CUTSHEETS

LSC TRANSPORTATION CONSULTANTS, INC.

1889 York Street Denver, CO 80206 (303) 333-1105 FAX (303) 333-1107 E-mail: lscdenver@lsctrans.com

February 7, 2025

Mr. Jacob Schneck Sopher Sparn Architects, LLC 2505 Walnut Street, Suite 200 Boulder, CO 80302

> Re: Maiker Boyers Adams County, CO LSC #240770

Dear Mr. Schneck:

In response to your request, LSC Transportation Consultants, Inc. has prepared this traffic impact analysis for the proposed Maiker-Boyers development. As shown on Figure 1, the site is located south of E. 73rd Avenue and west of Washington Street in Adams County, Colorado.

REPORT CONTENTS

The report contains the following: the existing roadway and traffic conditions in the vicinity of the site including the lane geometries, traffic controls, posted speed limits, etc.; the existing weekday peak-hour traffic volumes; the typical weekday site-generated traffic volume projections for the site; the assignment of the projected traffic volumes to the area roadways; the projected background and resulting total traffic volumes on the area roadways; the site's projected traffic impacts; and any recommended roadway improvements to mitigate growth in background traffic or from the impact of the site.

LAND USE AND ACCESS

The site is proposed to include about 117 apartment dwelling units, a 2,000 square-foot coffee shop, and about 1,622 square feet of retail space. Signalized access is proposed from Washington Street as shown in the conceptual site plan in Figure 2. A secondary right-out-only access is also proposed further south.

ROADWAY AND TRAFFIC CONDITIONS

Area Roadways

The major roadways in the site's vicinity are shown on Figure 1 and are described below.

• **Washington Street** is a north-south, six-lane major arterial roadway east of the site. The intersections with E. 78th Avenue, E. 76th Avenue, E. 73rd Avenue, E. 71st Avenue, and E.

70th Avenue are signalized with auxiliary lanes and the intersection with E. 74th Avenue is stop-sign controlled. The posted speed limit in the vicinity of the site is 40 mph.

- **E. 78th Avenue** is an east-west, two-lane collector roadway north of the site. The intersection with Washington Street is signalized with auxiliary lanes. The posted speed limit in the vicinity of the site is 35 mph.
- **E. 76th Avenue** is an east-west, two-lane local roadway north of the site. The intersection with Washington Street is signalized with auxiliary lanes. The posted speed limit in the vicinity of the site is 25 mph.
- **E. 74th Avenue** is an east-west, two-lane local north of the site. The intersection with Washington Street is stop-sign controlled. The posted speed limit in the vicinity of the site is 25 mph.
- **E. 73rd Avenue** is an east-west, two-lane local roadway south of the site. The intersection with Washington Street is signalized with auxiliary lanes. The posted speed limit in the vicinity of the site is 25 mph.
- **E. 71st Avenue** is an east-west, two-lane local roadway south of the site. The intersection with Washington Street is signalized with auxiliary lanes. No speed limit is posted.
- **E. 70th Avenue** is an east-west, two-lane collector roadway south of the site. The intersection with Washington Street is signalized with auxiliary lanes. The posted speed limit in the vicinity of the site is 50 mph.

Existing Traffic Conditions

Figure 3 shows the existing traffic volumes, existing traffic control, and lane geometry in the site's vicinity on a typical weekday. The weekday peak-hour traffic volumes and daily traffic counts are from the attached traffic counts conducted by Counter Measures in January, 2025.

2028 and 2045 Background Traffic

Figure 4 shows the estimated 2028 background traffic and Figure 5 shows the estimated 2045 background traffic. The background traffic assumes a one percent annual growth rate based on a comparison of 2020 (28,000 vpd) and 2050 (36,000 vpd) DRCOG projections.

Existing, 2028, and 2045 Background Levels of Service

Level of service (LOS) is a quantitative measure of the level of congestion or delay at an intersection. Level of service is indicated on a scale from "A" to "F." LOS A is indicative of little congestion or delay and LOS F is indicative of a high level of congestion or delay. Attached are specific level of service definitions for signalized and unsignalized intersections.

The intersections in the study area were analyzed as appropriate to determine the existing, 2028, and 2045 background levels of service using Synchro. Table 1 shows the level of service analysis results. The level of service reports are attached.

- 1. Washington Street/E. 78th Avenue: This signalized intersection currently operates at an overall LOS "B" during the morning peak-hour and LOS "A" during the afternoon peak-hour and is expected to do so through 2045.
- 2. Washington Street/E. 76th Avenue: This signalized intersection currently operates at an overall LOS "A" during both morning and afternoon peak-hours and is expected to do so through 2045.
- **3.** Washington Street/E. 74th Avenue/Auto Nation Driveway: All movements at this stopsign controlled intersection currently operate at LOS "B" or better and are expected to operate at LOS "C" or better during both morning and afternoon peak-hours through 2045.
- **4. Washington Street/E. 73rd Avenue:** This signalized intersection currently operates at an overall LOS "A" during both morning and afternoon peak-hours and is expected to do so through 2045.
- **5. Washington Street/E. 71st Avenue:** This signalized intersection currently operates at an overall LOS "A" during both morning and afternoon peak-hours and is expected to do so through 2045.
- **6. Washington Street/E. 70th Avenue:** This signalized intersection currently operates at an overall LOS "D" during both morning and afternoon peak-hours and is expected to do so through 2045.
- 7. Washington Street/Right-Out-Only Site Access: This unsignalized intersection was analyzed only in the total traffic scenarios.

TRIP GENERATION

Table 2 shows the estimated average weekday, morning peak-hour, and afternoon peak-hour trip generation for the proposed site for three separate scenarios based on the rates from *Trip Generation*, 11th Edition, 2021 by the Institute of Transportation Engineers (ITE).

The site is projected to generate about 1,686 vehicle-trips on the average weekday, with about half entering and half exiting during a 24-hour period. During the morning peak-hour, which generally occurs for one hour between 6:30 and 8:30 a.m., about 107 vehicles would enter and about 126 vehicles would exit the site. During the afternoon peak-hour, which generally occurs for one hour between 4:00 and 6:00 p.m., about 65 vehicles would enter and about 55 vehicles would exit. These estimates are expected to be reduced due to pass-by traffic as shown in Table 2.

TRIP DISTRIBUTION

Figure 6 shows the estimated directional distribution of the site-generated traffic volumes on the area roadways. The estimates were based on the location of the site with respect to the regional population, employment, and activity centers; and the site's proposed land use.

TRIP ASSIGNMENT

Figure 7a shows the primary site-generated traffic volumes which are the directional distribution percentages (from Figure 6) applied to the trip generation estimate (from Table 2).

Figure 7b shows the passby site-generated traffic volumes from Table 2.

2028 AND 2045 TOTAL TRAFFIC

Figure 8 shows the 2028 total traffic which is the sum of the 2028 background traffic volumes (from Figure 4) and the site-generated traffic volumes (from Figures 7a and 7b). Figure 8 also shows the 2028 total traffic lane geometry and traffic control.

Figure 9 shows the 2045 total traffic which is the sum of the 2045 background traffic volumes (from Figure 5) and the site-generated traffic volumes (from Figures 7a and 7b). Figure 9 also shows the 2045 total traffic lane geometry and traffic control.

PROJECTED LEVELS OF SERVICE

The intersections in the study area were analyzed to determine the 2028 and 2045 total levels of service. Table 1 shows the level of service analysis results for each movement or lane group. The level of service reports are attached.

- 1. Washington Street/E. 78th Avenue: This signalized intersection is expected to operate at an overall LOS "B" during the morning peak-hour and LOS "A" during the afternoon peak-hour through 2045.
- 2. Washington Street/E. 76th Avenue: This signalized intersection is expected to operate at an overall LOS "A" during both morning and afternoon peak-hours through 2045.
- **3.** Washington Street/E. 74th Avenue/Auto Nation Driveway: All movements at this stopsign controlled intersection are expected to operate at LOS "C" or better during both morning and afternoon peak-hours through 2045.
- **4. Washington Street/E. 73rd Avenue:** This signalized intersection is expected to operate at an overall LOS "A" during both morning and afternoon peak-hours through 2045. The existing traffic signal pole on the southeast corner should be replaced with a pole and mast arm combination.
- **5. Washington Street/E. 71st Avenue:** This signalized intersection is expected to operate at an overall LOS "A" during both morning and afternoon peak-hours through 2045.
- **6. Washington Street/E. 70th Avenue:** This signalized intersection is expected to operate at an overall LOS "D" during both morning and afternoon peak-hours through 2045.
- **7. Washington Street/Right-Out-Only Site Access:** All movements at this stop-sign controlled intersection are expected to operate at LOS "B" or better during both morning and afternoon peak-hours through 2045.

95TH PERCENTILE QUEUE LENGTHS

Table 3 shows the existing and projected 95th percentile queue lengths for the signalized intersections. Table 3 also shows the existing and future turn lane lengths.

RECOMMENDED IMPROVEMENTS

Table 4 shows the recommended improvements at Intersections #4 and #6.

CONCLUSIONS AND RECOMMENDATIONS

Trip Generation

1. The site is projected to generate about 1,686 vehicle-trips on the average weekday, with about half entering and half exiting during a 24-hour period. During the morning peakhour, about 107 vehicles would enter and about 126 vehicles would exit the site. During the afternoon peak-hour, about 65 vehicles would enter and about 55 vehicles would exit. These estimates are expected to be reduced by pass-by trips as shown in Table 2.

Projected Levels of Service

- 2. All of the signalized intersections are expected to operate at an overall LOS "D" or better through 2045 with the recommended improvements.
- 3. All movements at the unsignalized intersections analyzed are expected to operate at acceptable levels of service during both morning and afternoon peak-hours through 2045.

Conclusions

4. The impact of the Maiker-Boyers development can be accommodated by the existing and planned roadway network with the following recommendations.

Recommendations

5. The recommended improvements are shown in Figures 8 and 9 and Tables 3 and 4.

* * * * *

We trust our findings will assist you in gaining approval of the proposed Maiker-Boyers development. Please contact me if you have any questions or need further assistance.

Respectfully submitted, LSC Transportatio Inc. Consult 901 By: Christophen McGra P.E. Principal/Presid z75 CSM/wc

Enclosures: Tables 1 - 4 Figures 1 - 9 Traffic Count Reports Level of Service Definitions Level of Service Reports Queuing Reports

G:\Shared drives\Denver Projects 2021-2030\2024\240770-MaikerBoyersTripGen\Report\Maiker-Boyers-020725.wpd

Table 1 (Page 1 of 2) Intersection Levels of Service Analysis Maiker-Boyers Adams County, CO LSC #240770; February, 2025

.

				20	28	20	28	20	45	20	45
		Existing	g Traffic	Backgrou	nd Traffic	Total	Traffic	Backgrou	nd Traffic	Total	Traffic
		Level of	Level of	Level of	Level of	Level of	Level of	Level of	Level of	Level of	Level of
	Traffic	Service	Service	Service	Service	Service	Service	Service	Service	Service	Service
Intersection # and Location	Control	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
1) Washington Street/E 78th Avenue	Signalized										
FBL eft	Olghalized	П	П	П	П	П	П	П	П	П	П
FB Through		D	D	D	D	D	D	Č	D	Č	D
EB Right		D	D	D	D	D	D	Č	D	C C	D
WBLeft		D	D	D	D	D	D	D	D	D	D
WB Through		D	D	D	D	D	D	C	D	C	D
WB Right		D	D	D	D	D	D	D	D	D	D
NB Left		Ā	Ā	Ā	Ā	Ā	Ā	Ā	Ā	Ā	Ā
NB Through		A	A	A	A	A	A	A	A	A	A
NB Right		А	А	А	А	А	А	А	А	А	А
SB Left		А	А	А	А	А	А	А	А	А	А
SB Through		А	А	А	А	А	А	А	А	А	А
SB Right		А	А	А	А	А	А	А	А	А	А
Entire Intersection Delay (sec /veh)		10.7	5.8	10.8	5.8	10.8	5.8	11.9	6.0	11.9	5.9
Entire Intersection LOS		В	А	В	А	В	А	В	А	В	А
2) Washington Street/F 76th Avenue	Signalized										
EBLeft	orginalizou	D	D	D	D	D	D	D	D	D	D
FB Right		D	D	D	D	D	D	D	D	D	D
NB L eft		Ā	Ā	Ā	Ā	Ā	Ā	A	Ā	Ā	Ā
NB Through		A	A	A	A	A	A	A	A	A	A
SB Through/Right		A	A	A	A	A	A	A	A	A	A
Entire Intersection Delay (sec /veh)		1.0	1.2	1.1	1.4	1.1	1.4	1.2	1.2	1.2	1.2
Entire Intersection LOS		А	А	А	А	А	А	А	А	А	А
3) Washington Street/E. 74th Avenue/Auto	TWSC										
Nation Driveway											
NB Left		В	А	В	А	В	А	В	А	В	А
EB Approach		В	В	В	В	В	В	В	В	В	В
WB Approach				В	С	В	С	В	С	В	С
SB Left		А	А	А	А	А	А	А	В	А	В
Critical Movement Delay (sec./veh.)		11.7	10.0	12.0	17.1	12.0	17.4	13.4	23.3	13.5	23.8

Table 1 (Page 2 of 2) Intersection Levels of Service Analysis Maiker-Boyers Adams County, CO LSC #240770; February, 2025

.

				20	28	20	28	20	45	20	45
		Existing	Traffic	Backgrou	nd Traffic	Total	Traffic	Backgrou	nd Traffic	Total	Traffic
		Level of	Level of	Level of	Level of	Level of	Level of	Level of	Level of	Level of	Level of
	Traffic	Service	Service	Service	Service	Service	Service	Service	Service	Service	Service
Intersection # and Location	Control	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
4) Washington Street/E. 73rd Avenue/	Signalized										
Boyers Driveway	0										
EB Left		А	А	А	А	D	D	А	А	D	D
EB Through/Right		D	А	А	А	D	D	Α	А	D	D
WB Left		D	D	D	D	D	D	D	D	D	D
WB Through/Right		D	D	D	D	D	D	D	D	D	D
NB Left		А	А	А	А	А	А	Α	А	А	А
NB Through		А	А	А	А	А	А	Α	А	А	А
NB Right		А	А	А	А	А	А	А	А	А	А
SB Left		А	А	А	А	А	А	Α	А	А	А
SB Through/Right		A	А	A	А	А	А	А	А	A	А
Entire Intersection Delay (sec /veh)		1.3	4.0	1.4	4.0	2.8	4.4	1.5	4.1	2.8	4.4
Entire Intersection LOS		А	А	А	А	А	А	А	А	А	А
5) Washington Street/E. 71st Avenue	Signalized										
WB Left		D	D	D	D	D	D	D	D	D	D
WB Right		D	D	D	D	D	D	D	D	D	D
NB Through		A	А	A	А	А	А	А	А	A	А
NB Right		A	A	A	А	А	А	A	А	A	A
SB Left		A	A	A	А	А	А	A	А	A	A
SB Through		A	A	A	A	А	A	A	А	A	А
Entire Intersection Delay (sec /veh)		1.1	2.0	1.1	2.0	1.1	2.0	1.2	2.0	1.2	2.0
Entire Intersection LOS		A	A	A	A	A	A	A	A	A	A
6) Washington Street/E. 70th Avenue	Signalized										
EB Left		E	E	D	E	E	E	E	E	E	E
EB Through		В	В	В	В	В	В	С	С	С	С
EB Right		A	A	А	А	A	A	A	А	А	А
WB Left		E	E	E	E	E	E	E	E	E	E
WB Through		В	С	В	С	С	С	С	С	С	С
WB Right		A	A	A	A	A	A	A	A	A	A
NB Left		D	D	D	E	D	E	D	D	D	D
NB Through/Right		D	D	D	D	D	D	D	D	D	D
SB Left		E	С	D	С	D	С	E	D	E	D
SB Through		D	D	D	D	D	С	D	С	D	С
SB Right		A	A	A	A	A	A	A	A	A	A
Entire Intersection Delay (sec /veh)		43.0	38.6	39.2	40.4	39.5	40.8	40.9	41.7	41.4	42.2
Entire Intersection LOS		D	D	D	D	D	D	D	D	D	D
7) Washington Street/Right-Out-Only Access	TWSC										
EB Right						В	A			В	В
Critical Movement Delay (sec./veh.)						11.9	9.7			13.5	10.0

Table 2
ESTIMATED TRAFFIC GENERATION
Maiker Boyers
Adams County, CO
LSC #240770; February, 2025

		_	Trip Ger	neration F	ates ⁽¹⁾			Vehicle-Ti	rips Gen	erated	ated	
		Average	AM Pe	ak-Hour	PM Pea	ak-Hour	Average	AM Peal	k-Hour	PM Peal	k-Hour	
Trip Generating Category	Quantity	Weekday	In	Out	In	Out	Weekday	In	Out	In	Out	
CURRENTLY PROPOSED LAND USE												
Apartments ⁽²⁾	117 DU ⁽³⁾	4.54	0.085	0.285	0.238	0.152	531	10	33	28	18	
Coffee Shop ⁽⁴⁾	2.000 KSF (5)	533.57	47.471	45.609	16.145	16.145	1,067	95	91	32	32	
Retail ⁽⁶⁾	1.622 KSF ⁽⁵⁾	54.45	1.416	0.944	3.295	3.295	88	2	2	5	5	
						Total =	1,686	107	126	65	55	
					Passby]	Trips ⁽⁷⁾ =	980	83	83	30	30	
					Primary	y Trips =	706	24	43	35	25	

Notes:

(1) Source: Trip Generation, Institute of Transportation Engineers, 11th Edition, 2021

(2) ITE Land Use No. 221 - Multifamily Housing (Mid-Rise)

(3) DU = dwelling units

(4) ITE Land Use No. 936 - Coffee/Donut Shop w/o drive-through window - no daily rate given - the daily rate is based on the rates for with drive-through because the peak-hour rates are similar.

(5) KSF = 1,000 square feet

(6) ITE Land Use No. 822 - Strip Retail Plaza (<40k)

(7) Passby trips are assumed to be 34% for the retail land use and 89% for the coffee shop land use based on the *Trip Generation Handbook*, 3rd Edition.

Table 3 95th Percentile Queue Lengths Maiker-Boyers Adams County, CO LSC #240770; February, 2025

	Evicting	Future	95th Pe Queue	ercentile Length								
	Lane Lengths	if different	AM Peak	PM Peak								
Intersection No. & Location	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
1) Washington Street/F 78th Ave	nue											
FBL eft	75		44	42	44	43	44	43	44	46	44	46
FB Through			28	12	28	12	28	12	29	13	29	13
EB Right	75		0	0	0	0	0	0	0	0	0	0
WBLeft	225		162	80	165	82	165	82	192	91	192	91
WB Through			20	6	20	8	20	8	20	13	20	13
WB Right	215		42	45	43	45	43	45	46	48	46	48
NB Left	180		9	7	10	7	10	7	13	10	14	10
NB Through			73	222	75	234	78	235	88	322	92	326
NB Right	180		12	19	13	19	13	19	17	22	17	22
SB Left	200		38	27	39	29	39	29	45	35	45	35
SB Through			265	51	283	54	286	55	375	67	377	70
SB Right	175		8	7	8	7	8	7	8	7	8	7
2) Washington Street/E 76th Ave												
FB1 eft	50		27	44	31	47	31	47	31	47	31	47
EB Right			18	19	21	20	21	20	21	20	21	20
NB L eft	70		10	1	12	2	13	2	18	2	19	2
NB Through			18	66	19	70	20	70	23	88	23	89
SB Through/Right			90	30	96	31	97	32	127	38	127	38
(1) Washington Street/E 73rd Ave	nue/Bovers Drivew	221										
FBL eft	n <u>ue/Doyers Drivew</u>	<u>ay</u> 40	0	0	0	0	59	32	0	0	58	30
EB Through/Right	0	40	0	0	0	0	73	0	0	0	86	0
W/B L off	60		3/	51	36	53	35	53	12	60	40	60
WB Through/Right			0	73	0	80	0	78	0	116	-10	115
NB Left	80		Ő	0	õ	0	21	12	õ	0	32	15
NB Through			34	147	36	160	43	157	45	253	56	250
NB Right	135		4	8	4	8	6	8	5	11	7	11
SBLeft	175		8	7	9	8	11	7	10	11	14	11
SB Through/Right			89	41	94	45	121	44	127	64	166	64
5) Washington Street/F 71st Aver												
WB Left	75		24	48	25	50	25	50	31	53	31	53
WB Right			27	30	23	30	23	30	29	32	29	32
NB Through			21	69	21	73	22	75	26	93	23	96
SBLeft	265		7	7	7	7	7	7	7	9	7	9
SB Through			81	32	84	34	87	35	110	42	113	43
6) Washington Street/F 70th Ave	nue											
EB Left	2 @ 185	2 @ 325	164	252	161	265	164	271	191	308	195	313
EB Through			130	214	133	198	133	198	156	266	156	266
EB Right	Continuous		69	9	75	10	78	10	138	19	140	19
WBLeft	230		203	74	201	76	201	76	232	85	232	85
WB Through			134	154	138	157	138	157	162	190	162	190
WB Right	200		0	58	0	59	0	60	0	72	0	76
NB Left	285	390	60	270	62	294	62	298	70	383	70	388
NB Through/Right			69	260	70	268	75	275	83	331	88	338
SB Left	220	480	340	127	327	144	338	154	466	217	481	224
SB Through			217	115	225	120	232	123	273	139	281	143
SB Right	Continuous		106	65	128	66	136	66	273	89	284	96
7) Washington Street/Right-Out-												
Only Access												
EB Right							<25	<25			<25	<25

		Table 4 Recommended Improvements to Pu Maiker-Boyers Adams County, C LSC #240770; February	blic Street No O v, 2025	etwork	
Inter-					
No.	Intersection Location	2028 Recommended Improvements	Responsibility	2045 Recommended Improvements	Responsibility
#4	Washington Street/E. 73rd Avenue	EB LT - provide 40-foot turn lane	Applicant		
		SE Corner - replace traffic signal post with pole/mast arm combination	Applicant		
#6	Washington Street/E. 70th Avenue			EB LT - increase 2 @ 185 feet to 2 @ 325 feet	Others
				NB LT - increase from 285 feet to 390 feet	Others
				SB LT - increase from 220 feet to 480 feet	Others
-			i		
#7	Washington Street/Right-Out-Only Access	Construct Access	Applicant		

Note: Assumes one percent annual growth rate based on a comparison of 2020 and 2050 DRCOG projections.

Figure 6

Percent Directional Distribution

LEGEND:

65%

=

Directional Distribution of Primary Site-Generated Traffic

Maiker Boyers (LSC #240770)

TRANSPORTATION CONSULTANTS, IN

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: E/W STREET: CITY: COUNTY: File Name : WASHINGTON ST 71ST AVE Site Code : 00000016 Start Date : 1/22/2025 Page No : 1

	Groups Printed- Unshifted														_		
	W	ASHING	GTON S	ST		71ST	AVE		W	ASHIN	GTON S	т		71ST	AVE		
	S	SOUTH	BOUND)		WESTE	BOUND		1	IORTH	BOUND)		EASTE	BOUND		
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
06:30 AM	6	356	0	0	4	0	0	1	0	55	13	0	0	0	0	0	435
06:45 AM	4	363	0	0	0	0	2	0	0	90	2	0	0	0	0	0	461
Total	10	719	0	0	4	0	2	1	0	145	15	0	0	0	0	0	896
07:00 AM	2	290	0	0	1	0	6	0	0	78	1	0	0	0	0	0	378
07:15 AM	6	360	0	0	6	0	4	1	0	106	2	1	1	0	1	0	488
07:30 AM	10	387	0	0	1	0	7	0	0	93	4	0	0	0	0	0	502
07:45 AM	8	380	0	0	2	0	8	0	0	115	9	0	0	0	0	0	522
Total	26	1417	0	0	10	0	25	1	0	392	16	1	1	0	1	0	1890
08:00 AM	4	352	0	0	1	0	8	0	0	122	7	0	0	0	0	0	494
08:15 AM	10	302	0	0	2	0	1	0	0	135	9	0	0	0	0	0	459
Total	14	654	0	0	3	0	9	0	0	257	16	0	0	0	0	0	953
04:00 PM	1	190	0	1	8	0	10	1	0	277	10	0	0	0	0	0	498
04:15 PM	2	150	0	0	4	0	8	0	0	277	3	1	0	0	0	2	447
04:30 PM	5	153	0	0	9	0	6	0	0	303	3	0	0	0	0	0	479
04:45 PM	4	146	0	1	9	0	7	0	0	304	4	0	0	0	0	1	476
Total	12	639	0	2	30	0	31	1	0	1161	20	1	0	0	0	3	1900
05:00 PM	10	163	0	0	8	3	13	0	0	296	6	0	0	0	0	0	499
05:15 PM	13	136	0	0	14	0	16	0	0	294	13	0	0	0	0	0	486
05:30 PM	2	156	0	0	40	0	40	0	0	281	6	0	0	0	0	0	525
05:45 PM	2	128	0	0	5	0	2	0	0	233	0	0	0	0	0	0	370
Total	27	583	0	0	67	3	71	0	0	1104	25	0	0	0	0	0	1880
Grand Total	89	4012	0	2	114	3	138 52 5	3	0	3059	92	2	1	0	1	3	7519
Total %	2.2 1.2	97.8 53.4	0	0	44.2 1.5	1.2	53.5 1.8	0	0	97 40.7	2.9 1.2	0.1	20	0	20 0	60 0	

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: E/W STREET: CITY: COUNTY: File Name : WASHINGTON ST 71ST AVE Site Code : 00000016 Start Date : 1/22/2025 Page No : 2

																					-
		WAS	HINGT	ON S	т		7	1ST A	VE			WAS	HING	TON S	т		7	1ST A	νE		
		SOL	JTHBO	DUND			WE	STBC	UND			NOF	RTHB	DUND			EA	STBC	UND		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour /	Analys	is Fro	m 07:	15 AM	to 08:0	MA 0	- Peal	< 1 of	1												
Peak Hour f	for Ent	ire Inte	ersect	ion Be	gins at	07:15	AM														
07:15 AM	6	360	0	0	366	6	0	4	1	11	0	106	2	1	109	1	0	1	0	2	488
07:30 AM	10	387	0	0	397	1	0	7	0	8	0	93	4	0	97	0	0	0	0	0	502
07:45 AM	8	380	0	0	388	2	0	8	0	10	0	115	9	0	124	0	0	0	0	0	522
08:00 AM	4	352	0	0	356	1	0	8	0	9	0	122	7	0	129	0	0	0	0	0	494
Total Volume	28	1479	0	0	1507	10	0	27	1	38	0	436	22	1	459	1	0	1	0	2	2006
% App. Total	1.9	98.1	0	0		26.3	0	71.1	2.6		0	95	4.8	0.2		50	0	50	0		
PHF	.700	.955	.000	.000	.949	.417	.000	.844	.250	.864	.000	.893	.611	.250	.890	.250	.000	.250	.000	.250	.961

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: E/W STREET: CITY: COUNTY: File Name : WASHINGTON ST 71ST AVE Site Code : 00000016 Start Date : 1/22/2025 Page No : 3

		WAS			т		7 WE	1ST A				WAS			т		7 F 4	1ST A			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour /	Analys	is Fro	m 04:	15 PM	to 05:0	0 PM	- Peal	< 1 of	1												
Peak Hour f	or Ent	ire Inte	ersect	ion Be	gins at	04:15	PM														
04:15 PM	2	150	0	0	152	4	0	8	0	12	0	277	3	1	281	0	0	0	2	2	447
04:30 PM	5	153	0	0	158	9	0	6	0	15	0	303	3	0	306	0	0	0	0	0	479
04:45 PM	4	146	0	1	151	9	0	7	0	16	0	304	4	0	308	0	0	0	1	1	476
05:00 PM	10	163	0	0	173	8	3	13	0	24	0	296	6	0	302	0	0	0	0	0	499
Total Volume	21	612	0	1	634	30	3	34	0	67	0	1180	16	1	1197	0	0	0	3	3	1901
% App. Total	3.3	96.5	0	0.2		44.8	4.5	50.7	0		0	98.6	1.3	0.1		0	0	0	100		
PHF	.525	.939	.000	.250	.916	.833	.250	.654	.000	.698	.000	.970	.667	.250	.972	.000	.000	.000	.375	.375	.952

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: WASHINGTON ST E/W STREET: 73RD AVE CITY: DENVER COUNTY: DENVER

File Name : WASHINGTON ST 73RD AVE Site Code : 00000005 Start Date : 1/21/2025 Page No : 1

						G	roups	Printed	- Unshi	fted							
	W.	ASHIN SOUTH	GTON S BOUND	T	,	73RD WESTE			W.	ASHIN(NORTH	GTON S BOUND	БТ)	P	RIVATI		E	
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
06:30 AM	8	240	0	0	4	0	4	0	0	48	3	0	2	0	0	0	309
06:45 AM	13	309	0	3	7	0	2	0	0	56	12	0	3	0	0	0	405
Total	21	549	0	3	11	0	6	0	0	104	15	0	5	0	0	0	714
07:00 AM	Б	224	0	0	2	0	7	0	1	60	4	0	0	0	1	0	214
07:00 AM	2	254	0	0	6	0	6	0	0	71	4	0	0	0	1	0	214
07.13 AM	2	292	0	0	2	0	7	1	0	62	6	0	0	0	0	0	360
07:45 AM	8	240	0	0	5	0	8	0	0	76	12	0	0	0	0	0	349
Total	22	1007	0	0	15	0	28	4	1	269	28	0	0	0	2	0	1376
		047	•		_	•	0		•	00	0		•	0	0	•	
08:00 AM	14	217	0	0	5	0	6	0	0	89	3	0	0	0	0	0	334
08:15 AM	11	216	0	0	9	0	13	1	0	69	9	0	0	0	0	0	328
Total	25	433	0	0	14	0	19	1	0	158	12	0	0	0	0	0	662
04:00 PM	7	149	0	0	19	0	34	0	0	241	18	0	0	0	0	0	468
04:15 PM	3	128	0	0	6	0	32	0	0	245	12	0	0	0	0	0	426
04:30 PM	6	157	0	0	9	0	36	0	0	248	19	1	0	0	0	0	476
04:45 PM	0	130	0	0	10	0	27	0	0	265	12	0	0	0	0	0	444
Total	16	564	0	0	44	0	129	0	0	999	61	1	0	0	0	0	1814
	0	407	0		0	4	04		0	077	10		0	0	0	0	400
05.00 PIVI	0	157	0	0	9 15	1	21	2	0	211	10	0	0	0	0	0	400
05.15 PIVI	4	100	0	0	10	0	20	0	0	207	19	0	0	0	0	0	401
05.30 FIVI	2	120	0	0	0 II	0	19	0	0	217	10	0	0	0	0	0	201
Total	18	527	0	0	/3	1	82	2	0	1060	56	0	0	0	0	0	1708
TOTAL	10	521	0	0	40	1	02	2	0	1003	50	U I	0	0	0	0	1730
Grand Total	102	3080	0	3	127	1	264	7	1	2599	172	1	5	0	2	0	6364
Apprch %	3.2	96.7	0	0.1	31.8	0.3	66.2	1.8	0	93.7	6.2	0	71.4	0	28.6	0	
Total %	1.6	48.4	0	0	2	0	4.1	0.1	0	40.8	2.7	0	0.1	0	0	0	

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: WASHINGTON ST E/W STREET: 73RD AVE CITY: DENVER COUNTY: DENVER

File Name : WASHINGTON ST 73RD AVE Site Code : 00000005 Start Date : 1/21/2025 Page No : 2

		WASI SOL	HINGT JTHB(TON S	Т		7 WE	3RD A STBC				WAS NOF	HING RTHB	TON S	Т		PRI\ EA	/ATE STBC		E	
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour /	Analys	is Fro	m 07:'	15 AM	to 08:0	0 AM	- Peal	k 1 of	1												
Peak Hour f	for Ent	ire Inte	ersect	ion Be	gins at	07:15	AM														
07:15 AM	2	252	0	0	254	6	0	6	0	12	0	71	6	0	77	0	0	1	0	1	344
07:30 AM	7	281	0	0	288	2	0	7	4	13	0	62	6	0	68	0	0	0	0	0	369
07:45 AM	8	240	0	0	248	5	0	8	0	13	0	76	12	0	88	0	0	0	0	0	349
08:00 AM	14	217	0	0	231	5	0	6	0	11	0	89	3	0	92	0	0	0	0	0	334
Total Volume	31	990	0	0	1021	18	0	27	4	49	0	298	27	0	325	0	0	1	0	1	1396
% App. Total	3	97	0	0		36.7	0	55.1	8.2		0	91.7	8.3	0		0	0	100	0		
PHF	.554	.881	.000	.000	.886	.750	.000	.844	.250	.942	.000	.837	.563	.000	.883	.000	.000	.250	.000	.250	.946

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: WASHINGTON ST E/W STREET: 73RD AVE CITY: DENVER COUNTY: DENVER

File Name : WASHINGTON ST 73RD AVE Site Code : 00000005 Start Date : 1/21/2025 Page No : 3

		WASI SOL	HING1 JTHB(TON S	Т		7 WE	3RD A STBC				WAS NO	HING [.] RTHB	FON S OUND	Т		PRI EA	/ATE STBC	DRIVE]
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour /	Analys	is Fro	m 04:	15 PM	to 05:0	0 PM	- Peal	k 1 of	1												
Peak Hour f	or Ent	ire Int	ersect	ion Be	gins at	04:15	PM														
04:15 PM	3	128	0	0	131	6	0	32	0	38	0	245	12	0	257	0	0	0	0	0	426
04:30 PM	6	157	0	0	163	9	0	36	0	45	0	248	19	1	268	0	0	0	0	0	476
04:45 PM	0	130	0	0	130	10	0	27	0	37	0	265	12	0	277	0	0	0	0	0	444
05:00 PM	6	137	0	0	143	9	1	21	2	33	0	277	13	0	290	0	0	0	0	0	466
Total Volume	15	552	0	0	567	34	1	116	2	153	0	1035	56	1	1092	0	0	0	0	0	1812
% App. Total	2.6	97.4	0	0		22.2	0.7	75.8	1.3		0	94.8	5.1	0.1		0	0	0	0		
PHF	.625	.879	.000	.000	.870	.850	.250	.806	.250	.850	.000	.934	.737	.250	.941	.000	.000	.000	.000	.000	.952

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: WASHINGTON ST E/W STREET: 74TH AVE CITY: DENVER COUNTY: DENVER

File Name : WASHINGTON ST 74TH AVE Site Code : 00000005 Start Date : 1/21/2025 Page No : 1

							Groups	s Printe	d- Banl	٢2							
	W/ S	ASHING OUTHI	GTON S BOUND	БТ)		NO AC WESTE	CESS		W.	ASHIN(NORTH	GTON S BOUND	ST)		74TH EASTB			
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
06:30 AM	0	0	1	0	0	0	0	0	2	0	0	0	2	0	5	0	10
06:45 AM	0	0	0	0	0	0	0	0	5	0	0	0	1	0	7	0	13
Total	0	0	1	0	0	0	0	0	7	0	0	0	3	0	12	0	23
07:00 AM	0	0	2	0	0	0	0	0	4	0	0	0	1	0	9	0	16
07:15 AM	0	0	0	0	0	0	0	0	5	0	0	0	2	0	3	0	10
07:30 AM	0	0	1	0	0	0	0	0	2	0	0	0	0	0	3	0	6
07:45 AM	0	0	0	0	0	0	0	0	10	0	0	0	1	0	1	0	12
Total	0	0	3	0	0	0	0	0	21	0	0	0	4	0	16	0	44
08:00 AM	0	0	1	0	0	0	0	0	12	0	0	0	0	0	1	0	14
08:15 AM	0	0	0	0	0	0	0	0	5	0	0	0	0	0	1	0	6
Total	0	0	1	0	0	0	0	0	17	0	0	0	0	0	2	0	20
04:00 PM 04:15 PM	0 0	0 0	0 1	0 0	0 0	0 0	0 0	0 0	3 5	0 0	0 0	0	0 1	0 0	4 1	0 0	7
04:30 PM	0	0	0	0	0	0	0	0	3	0	0	0	0	0	5	0	8
04:45 PM	0	0	0	0	0	0	0	0	6	0	0	0	1	0	2	0	9
Total	0	0	1	0	0	0	0	0	17	0	0	0	2	0	12	0	32
05:00 PM	0	0	1	0	0	0	0	0	2	0	0	0	2	0	7	0	12
05:15 PM	0	0	0	0	0	0	0	0	4	0	0	0	1	0	3	0	8
05:30 PM	0	0	0	0	0	0	0	0	1	0	0	0	0	0	4	0	5
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
Total	0	0	1	0	0	0	0	0	7	0	0	0	3	0	15	0	26
Grand Total Apprch % Total %	0 0 0	0 0 0	7 100 4.8	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	69 100 47.6	0 0 0	0 0 0	0 0 0	12 17.4 8.3	0 0 0	57 82.6 39.3	0 0 0	145

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: WASHINGTON ST E/W STREET: 74TH AVE CITY: DENVER COUNTY: DENVER File Name : WASHINGTON ST 74TH AVE Site Code : 00000005 Start Date : 1/21/2025 Page No : 2

																					1
		WAS	INGT	ON S	т		NC) ACC	ESS			WAS	HING	FON S	т		7	4TH A	VE		
		SOL	THBC	DUND			WE	STBC	DUND			NOF	RTHB	OUND			EA	STBC	UND		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour /	Analys	is Fro	m 07:′	15 AM	to 08:0	MA 0	- Pea	k 1 of	1												
Peak Hour f	for Ent	ire Inte	ersect	ion Be	gins at	07:15	AM														
07:15 AM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	5	2	0	3	0	5	10
07:30 AM	0	0	1	0	1	0	0	0	0	0	2	0	0	0	2	0	0	3	0	3	6
07:45 AM	0	0	0	0	0	0	0	0	0	0	10	0	0	0	10	1	0	1	0	2	12
08:00 AM	0	0	1	0	1	0	0	0	0	0	12	0	0	0	12	0	0	1	0	1	14
Total Volume	0	0	2	0	2	0	0	0	0	0	29	0	0	0	29	3	0	8	0	11	42
% App. Total	0	0	100	0		0	0	0	0		100	0	0	0		27.3	0	72.7	0		
PHF	.000	.000	.500	.000	.500	.000	.000	.000	.000	.000	.604	.000	.000	.000	.604	.375	.000	.667	.000	.550	.750

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: WASHINGTON ST E/W STREET: 74TH AVE CITY: DENVER COUNTY: DENVER

File Name : WASHINGTON ST 74TH AVE Site Code : 00000005 Start Date : 1/21/2025 Page No : 3

		WASI SOL	HINGT		Т		NC WE	ACC				WAS NOF		TON S OUND	т		7 EA	4TH A STBC			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour /	Analys	is Fro	m 04:	15 PM	to 05:0	0 PM	- Pea	k 1 of	1												
Peak Hour f	for Ent	ire Inte	ersect	ion Be	gins at	04:15	PM														
04:15 PM	0	0	1	0	້ 1	0	0	0	0	0	5	0	0	0	5	1	0	1	0	2	8
04:30 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	3	0	0	5	0	5	8
04:45 PM	0	0	0	0	0	0	0	0	0	0	6	0	0	0	6	1	0	2	0	3	9
05:00 PM	0	0	1	0	1	0	0	0	0	0	2	0	0	0	2	2	0	7	0	9	12
Total Volume	0	0	2	0	2	0	0	0	0	0	16	0	0	0	16	4	0	15	0	19	37
% App. Total	0	0	100	0		0	0	0	0		100	0	0	0		21.1	0	78.9	0		
PHF	.000	.000	.500	.000	.500	.000	.000	.000	.000	.000	.667	.000	.000	.000	.667	.500	.000	.536	.000	.528	.771

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: WASHINGOTN ST E/W STREET: 75TH PL CITY: DENVER COUNTY: DENVER

File Name : WASHINGTON ST 75TH PL Site Code : 0000008 Start Date : 1/21/2025 Page No : 1

						Ģ	Groups	Printed	- Unshi	fted							_
	W	ASHING	GTON S	ST		7TH	I PL		w	ASHIN	GTON S	ST		NO AC	CESS		
	S	OUTH	BOUNE)		WESTE	BOUND		1	ORTH	BOUND)		EASTB	OUND		
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
06:30 AM	0	253	0	0	0	0	0	0	0	55	0	0	0	0	0	0	308
06:45 AM	1	333	0	0	0	0	0	0	0	47	1	0	0	0	0	0	382
Total	1	586	0	0	0	0	0	0	0	102	1	0	0	0	0	0	690
07:00 AM	0	228	٥	0	0	0	0	0	0	53	0	0	0	0	0	0	281
07:15 AM	35	220	0	0	0	0	1	0	0	66	0	0	0	0	0	0	324
07:30 AM	0	275	0	0	0	0	1	0	0	60	2	0	0	0	0	0	338
07:45 AM	2	254	Ő	0	Ő	0	0	Ő	0	70	0	0	0	õ	Ő	0	326
Total	37	979	0	0	0	0	2	0	0	249	2	0	0	0	0	0	1269
08.00 AM	1	234	0	0	0	0	1	0	0	88	1	0	0	0	0	0	325
08:15 AM	0	230	0	0	1	Ő	0	0	0	76	1	ŏ	0	Ő	Ő	Ő	308
Total	1	464	0	0	1	0	1	0	0	164	2	0	0	0	0	0	633
04:00 PM	1	154	0	0	2	0	0	0	0	284	0	1	0	0	0	0	442
04:15 PM	0	132	0	0	0	0	0	0	0	275	0	0	0	0	0	0	407
04:30 PM	1	151	0	0	0	0	1	0	0	287	0	1	0	0	0	0	441
04:45 PM	0	118	0	0	0	0	0	0	0	286	1	0	0	0	0	0	405
Total	2	555	0	0	2	0	1	0	0	1132	1	2	0	0	0	0	1695
05.00 PM	0	135	0	0	0	0	1	0	0	313	0	0	0	0	0	0	449
05:15 PM	Õ	141	Ő	Õ	Ő	Õ	0	Õ	Ő	274	1	õ	Ő	Õ	Õ	Ő	416
05:30 PM	Õ	120	Õ	Õ	0	0	3	Õ	Ő	309	0 0	õ	Õ	Õ	Õ	Õ	432
05:45 PM	0	118	0	0	0	0	Ō	0	0	244	2	1	0	Ō	0	0	365
Total	0	514	0	0	0	0	4	0	0	1140	3	1	0	0	0	0	1662
Grand Total	41	3098	0	0	3	0	8	0	0	2/8/	9	3	0	0	0	0	5949
Appron %	1.3	98.7	0	0	27.3	0	12.1	0	0	99.6	0.3	0.1	0	0	0	0	
i otal %	0.7	52.1	0	0	0.1	0	0.1	0	0	46.8	0.2	0.1	0	0	0	0	

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: WASHINGOTN ST E/W STREET: 75TH PL CITY: DENVER COUNTY: DENVER File Name : WASHINGTON ST 75TH PL Site Code : 0000008 Start Date : 1/21/2025 Page No : 2

		WAS			т		\A/E	7TH F				WAS			т				ESS		1
Start Time	Left	Thru	Right	Peds	App. Total	Left	 Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour /	Analys	is Fro	m 07:	15 AM	to 08:0	0 AM	- Peal	k 1 of	1		Lon		1.1.3.11	1		Lon		1.13.11			
Peak Hour f	for Ent	ire Int	ersect	ion Be	gins at	07:15	AM														
07:15 AM	35	222	0	0	257	0	0	1	0	1	0	66	0	0	66	0	0	0	0	0	324
07:30 AM	0	275	0	0	275	0	0	1	0	1	0	60	2	0	62	0	0	0	0	0	338
07:45 AM	2	254	0	0	256	0	0	0	0	0	0	70	0	0	70	0	0	0	0	0	326
08:00 AM	1	234	0	0	235	0	0	1	0	1	0	88	1	0	89	0	0	0	0	0	325
Total Volume	38	985	0	0	1023	0	0	3	0	3	0	284	3	0	287	0	0	0	0	0	1313
% App. Total	3.7	96.3	0	0		0	0	100	0		0	99	1	0		0	0	0	0		
PHF	.271	.895	.000	.000	.930	.000	.000	.750	.000	.750	.000	.807	.375	.000	.806	.000	.000	.000	.000	.000	.971

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: WASHINGOTN ST E/W STREET: 75TH PL CITY: DENVER COUNTY: DENVER File Name : WASHINGTON ST 75TH PL Site Code : 00000008 Start Date : 1/21/2025 Page No : 3

		WAS	HING	ON S	т			7TH F	۲L			WAS	HING	TON S	T		NC	D ACC	ESS]
		SOL	JTHBO	DUND			WE	STBC	DUND			NO	RTHB	OUND			EA	STBC	UND		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour /	Analys	is Fro	m 04:'	15 PM	to 05:0	00 PM	- Peal	k 1 of	1												
Peak Hour f	or Ent	ire Inte	ersect	ion Be	gins at	04:15	PM														
04:15 PM	0	132	0	0	132	0	0	0	0	0	0	275	0	0	275	0	0	0	0	0	407
04:30 PM	1	151	0	0	152	0	0	1	0	1	0	287	0	1	288	0	0	0	0	0	441
04:45 PM	0	118	0	0	118	0	0	0	0	0	0	286	1	0	287	0	0	0	0	0	405
05:00 PM	0	135	0	0	135	0	0	1	0	1	0	313	0	0	313	0	0	0	0	0	449
Total Volume	1	536	0	0	537	0	0	2	0	2	0	1161	1	1	1163	0	0	0	0	0	1702
% App. Total	0.2	99.8	0	0		0	0	100	0		0	99.8	0.1	0.1		0	0	0	0		
PHF	.250	.887	.000	.000	.883	.000	.000	.500	.000	.500	.000	.927	.250	.250	.929	.000	.000	.000	.000	.000	.948

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: WASHINIGTON ST E/W STREET: 76TH AVE CITY: DENVER COUNTY: DENVER

File Name : WASHINGTON ST 76TH AVE Site Code : 00000016 Start Date : 1/28/2025 Page No : 1

						G	oroups	Printed	- Unshi	fted							
	W. S	ASHIN OUTH	GTON S BOUND	ST	,	NO AC	CESS BOUND		W 1	ASHING	GTON S BOUND	ST)		76TH EASTE			
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
06:30 AM	0	309	5	0	0	0	0	0	5	61	0	0	2	1	4	0	387
06:45 AM	0	297	11	0	0	0	0	0	8	39	0	0	2	0	3	0	360
Total	0	606	16	0	0	0	0	0	13	100	0	0	4	1	7	0	747
07:00 AM	0	296	10	0	0	0	0	0	1	66	0	0	1	0	2	0	376
07:15 AM	0	347	6	0	0	0	0	0	6	92	0	0	3	0	4	0	458
07:30 AM	0	385	11	0	0	0	0	0	5	71	0	0	6	0	3	0	481
07:45 AM	0	394	17	0	0	0	0	0	15	117	0	0	0	0	1	0	544
Iotal	0	1422	44	0	0	0	0	0	27	346	0	0	10	0	10	0	1859
08:00 AM	0	377	18	0	0	0	0	0	7	92	0	0	3	0	3	0	500
08:15 AM	0	324	7	0	0	0	0	0	6	110	0	1	3	0	4	0	455
Total	0	701	25	0	0	0	0	0	13	202	0	1	6	0	7	0	955
04:00 PM	0	150	0	0	0	0	0	0	4	300	0	1	13	0	10	1	479
04:15 PM	0	135	0	0	0	0	0	0	1	315	0	0	6	0	0	0	457
04:30 PM	0	128	0	0	0	0	0	0	1	280	0	1	12	0	6	0	428
04:45 PM	0	147	1	0	0	0	0	0	0	283	0	0	4	0	5	0	440
Total	0	560	1	0	0	0	0	0	6	1178	0	2	35	0	21	1	1804
05:00 PM	0	129	1	0	0	0	0	0	0	303	0	1	5	0	1	0	440
05:15 PM	0	113	0	0	0	0	0	0	0	324	0	2	3	0	2	0	444
05:30 PM	0	141	0	1	0	0	0	0	2	294	0	0	2	0	5	0	445
05:45 PM	0	104	2	0	0	0	0	0	0	252	0	0	4	0	6	0	368
Total	0	487	3	1	0	0	0	0	2	1173	0	3	14	0	14	0	1697
Grand Total	0	3776	89	1	0	0	0	0	61	2999	0	6	69	1	59	1	7062
Apprch %	0	97.7	2.3	0	0	0	0	0	2	97.8	0	0.2	53.1	0.8	45.4	0.8	
Total %	0	53.5	1.3	0	0	0	0	0	0.9	42.5	0	0.1	1	0	0.8	0	

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: WASHINIGTON ST E/W STREET: 76TH AVE CITY: DENVER COUNTY: DENVER

File Name : WASHINGTON ST 76TH AVE Site Code : 00000016 Start Date : 1/28/2025 Page No : 2

		WASI SOL	HING1 JTHB(ON S	Г		NC WE	ACC	ESS OUND			WAS NOF	HING ^T RTHB	FON S DUND	Т		7 EA	6TH A	AVE DUND		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour /	Analys	is Fro	m 07:'	15 AM	to 08:0	MA 0	- Peal	k 1 of	1												
Peak Hour f	for Ent	ire Int	ersect	ion Be	gins at	07:15	AM														
07:15 AM	0	347	6	0	353	0	0	0	0	0	6	92	0	0	98	3	0	4	0	7	458
07:30 AM	0	385	11	0	396	0	0	0	0	0	5	71	0	0	76	6	0	3	0	9	481
07:45 AM	0	394	17	0	411	0	0	0	0	0	15	117	0	0	132	0	0	1	0	1	544
08:00 AM	0	377	18	0	395	0	0	0	0	0	7	92	0	0	99	3	0	3	0	6	500
Total Volume	0	1503	52	0	1555	0	0	0	0	0	33	372	0	0	405	12	0	11	0	23	1983
% App. Total	0	96.7	3.3	0		0	0	0	0		8.1	91.9	0	0		52.2	0	47.8	0		
PHF	.000	.954	.722	.000	.946	.000	.000	.000	.000	.000	.550	.795	.000	.000	.767	.500	.000	.688	.000	.639	.911

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: WASHINIGTON ST E/W STREET: 76TH AVE CITY: DENVER COUNTY: DENVER

File Name : WASHINGTON ST 76TH AVE Site Code : 00000016 Start Date : 1/28/2025 Page No : 3

		WAS			Т		NC WF					WAS			т		7 F 4	6TH A			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour /	Analys	is Fro	m 04:	15 PM	to 05:0	0 PM	- Pea	< 1 of	1												
Peak Hour f	for Ent	ire Inte	ersect	ion Be	gins at	04:15	ΡM														
04:15 PM	0	135	0	0	135	0	0	0	0	0	1	315	0	0	316	6	0	0	0	6	457
04:30 PM	0	128	0	0	128	0	0	0	0	0	1	280	0	1	282	12	0	6	0	18	428
04:45 PM	0	147	1	0	148	0	0	0	0	0	0	283	0	0	283	4	0	5	0	9	440
05:00 PM	0	129	1	0	130	0	0	0	0	0	0	303	0	1	304	5	0	1	0	6	440
Total Volume	0	539	2	0	541	0	0	0	0	0	2	1181	0	2	1185	27	0	12	0	39	1765
% App. Total	0	99.6	0.4	0		0	0	0	0		0.2	99.7	0	0.2		69.2	0	30.8	0		
PHF	.000	.917	.500	.000	.914	.000	.000	.000	.000	.000	.500	.937	.000	.500	.938	.563	.000	.500	.000	.542	.966

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: WASHINGTON ST E/W STREET: 78TH AVE CITY: DENVER COUNTY: DENVER

File Name : WASHINGTON ST 78TH AVE Site Code : 00000011 Start Date : 1/23/2025 Page No : 1

						G	iroups	Printed	- Unshi	fted							
	W.	ASHING SOUTH	GTON S BOUND	Т	,	78TH WESTE			W		GTON S BOUND	БТ)		78TH EASTE			
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
06:30 AM	13	289	1	0	34	0	18	1	0	38	4	2	3	1	3	0	407
06:45 AM	28	322	1	0	37	0	15	0	0	36	4	0	5	1	6	1	456
Total	41	611	2	0	71	0	33	1	0	74	8	2	8	2	9	1	863
07:00 AM	16	259	2	0	44	1	9	0	0	46	13	0	2	1	5	0	398
07:15 AM	15	287	0	õ	39	0	15	õ	4	74	14	õ	8	4	6	1	467
07:30 AM	28	287	2	0	41	3	31	Ō	1	59	13	0	6	5	4	0	480
07:45 AM	29	324	9	1	54	7	43	0	1	73	17	0	13	8	4	0	583
Total	88	1157	13	1	178	11	98	0	6	252	57	0	29	18	19	1	1928
08·00 AM	18	328	9	0	28	0	17	0	1	85	9	0	7	1	2	0	505
08:15 AM	22	285	6	õ	28	Ő	14	Ő	4	81	10	0	5	0	3	Ő	458
Total	40	613	15	0	56	0	31	0	5	166	19	0	12	1	5	0	963
04:00 PM	34	133	3	0	20	2	17	0	3	273	24	0	6	0	3	0	518
04:15 PM	23	95	7	0	14	1	17	1	3	257	26	1	3	2	1	1	452
04:30 PM	28	126	8	0	17	0	29	0	1	266	21	0	7	0	1	0	504
04:45 PM	28	110	7	0	22	0	24	0	2	225	24	1	9	2	3	0	457
Total	113	464	25	0	73	3	87	1	9	1021	95	2	25	4	8	1	1931
05:00 PM	25	127	12	0	10	0	20	0	2	257	28	0	8	0	0	0	489
05:15 PM	31	105	8	0	14	0	25	0	0	284	25	2	4	1	2	0	501
05:30 PM	34	112	7	0	26	3	28	0	2	251	25	0	8	1	2	0	499
05:45 PM	27	81	8	0	14	1	15	0	1	222	20	0	8	1	1	0	399
Total	117	425	35	0	64	4	88	0	5	1014	98	2	28	3	5	0	1888
Grand Total	399	3270	90	1	442	18	337	2	25	2527	277	6	102	28	46	3	7573
Apprch %	10.6	87	2.4	o l	55.3	2.3	42.2	0.3	0.9	89.1	9.8	0.2	57	15.6	25.7	1.7	
Total %	5.3	43.2	1.2	Ō	5.8	0.2	4.5	0	0.3	33.4	3.7	0.1	1.3	0.4	0.6	0	

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: WASHINGTON ST E/W STREET: 78TH AVE CITY: DENVER COUNTY: DENVER File Name : WASHINGTON ST 78TH AVE Site Code : 00000011 Start Date : 1/23/2025 Page No : 2

		WAS	HINGT	ON S	Т		7	8TH A	VE			WAS	HING	TON S	т		7	8TH A	VE]
		SOL	JTHBO	DUND			WE	STBC	UND			NO	RTHB	OUND			EA	STBC	UND		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour /	Analys	is Fro	m 07:′	15 AM	to 08:0	MA 0	- Peal	k 1 of	1												
Peak Hour f	for Ent	ire Inte	ersect	ion Be	gins at	07:15	AM														
07:15 AM	15	287	0	0	302	39	0	15	0	54	4	74	14	0	92	8	4	6	1	19	467
07:30 AM	28	287	2	0	317	41	3	31	0	75	1	59	13	0	73	6	5	4	0	15	480
07:45 AM	29	324	9	1	363	54	7	43	0	104	1	73	17	0	91	13	8	4	0	25	583
08:00 AM	18	328	9	0	355	28	0	17	0	45	1	85	9	0	95	7	1	2	0	10	505
Total Volume	90	1226	20	1	1337	162	10	106	0	278	7	291	53	0	351	34	18	16	1	69	2035
% App. Total	6.7	91.7	1.5	0.1		58.3	3.6	38.1	0		2	82.9	15.1	0		49.3	26.1	23.2	1.4		
PHF	.776	.934	.556	.250	.921	.750	.357	.616	.000	.668	.438	.856	.779	.000	.924	.654	.563	.667	.250	.690	.873

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: WASHINGTON ST E/W STREET: 78TH AVE CITY: DENVER COUNTY: DENVER

File Name : WASHINGTON ST 78TH AVE Site Code : 00000011 Start Date : 1/23/2025 Page No : 3

		WASI SOL	HINGT JTHBO	TON S	Т		7 WE	8TH A				WAS NOF		FON S OUND	т		7 EA	8TH A			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour /	Analys	is Fro	m 04:	15 PM	to 05:0	0 PM	- Peal	k 1 of	1												
Peak Hour f	or Ent	ire Int	ersect	ion Be	gins at	04:15	PM														
04:15 PM	23	95	7	0	125	14	1	17	1	33	3	257	26	1	287	3	2	1	1	7	452
04:30 PM	28	126	8	0	162	17	0	29	0	46	1	266	21	0	288	7	0	1	0	8	504
04:45 PM	28	110	7	0	145	22	0	24	0	46	2	225	24	1	252	9	2	3	0	14	457
05:00 PM	25	127	12	0	164	10	0	20	0	30	2	257	28	0	287	8	0	0	0	8	489
Total Volume	104	458	34	0	596	63	1	90	1	155	8	1005	99	2	1114	27	4	5	1	37	1902
% App. Total	17.4	76.8	5.7	0		40.6	0.6	58.1	0.6		0.7	90.2	8.9	0.2		73	10.8	13.5	2.7		
PHF	.929	.902	.708	.000	.909	.716	.250	.776	.250	.842	.667	.945	.884	.500	.967	.750	.500	.417	.250	.661	.943

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: WASHINGTON ST E/W STREET: HWY 224 CITY: DENVER COUNTY: DENVER

File Name : WASHINGTON ST HWY 224 Site Code : 00000020 Start Date : 1/23/2025 Page No : 1

_							Ģ	iroups	Printed	- Unshi	fted							
		W	ASHING	GTON S	T		HWY	224		w	ASHING	GTON S	ST		HWY	224		
		S	OUTH	BOUND)		WESTE	BOUND		1	ORTH	BOUND)		EASTB	OUND		
	Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
	06:30 AM	92	154	131	0	19	62	12	0	15	24	12	0	53	77	87	0	738
	06:45 AM	98	171	96	0	40	67	22	1	14	21	9	0	54	92	122	0	807
	Total	190	325	227	0	59	129	34	1	29	45	21	0	107	169	209	0	1545
	07:00 AM	91	133	119	0	26	74	37	0	17	26	3	0	68	71	109	1	775
	07:15 AM	114	121	115	0	33	71	19	0	18	31	12	0	77	59	64	0	734
	07:30 AM	91	133	124	0	41	76	19	0	18	29	4	0	53	72	76	1	737
	07:45 AM	119	164	132	0	34	96	17	1	24	30	10	0	85	91	65	0	868
	Total	415	551	490	0	134	317	92	1	77	116	29	0	283	293	314	2	3114
	08:00 AM	113	159	106	0	33	95	24	0	23	37	6	0	60	103	61	0	820
	08:15 AM	75	86	103	0	37	75	16	0	22	29	9	0	66	97	59	0	674
-	Total	188	245	209	0	70	170	40	0	45	66	15	0	126	200	120	0	1494
	04:00 DM	05	C 2	54		10	05	45		404	445	40			00	10	0	014
	04:00 PM	00	63	51	0	12	85	45	0	131	115	18	0	114	90	19	0	814
	04.15 PM	40	02	00 69	F	17	70	59		100	140	20	0	121	123	19	1	000
	04.30 PM	10	79	00 58	5	13	91	50	7	76	133	37 11	0	119	120	∠0 19	0	902
-	U4.45 FIVI	205	272	257	6	<u> </u>	241	222	/	207	<u> </u>	41	0	121	124	01	1	2446
	TOTAL	205	215	257	0	51	541	225	0	391	524	124	01	401	475	02	1	5440
	05:00 PM	34	61	81	0	15	105	38	2	98	120	31	2	102	159	12	0	860
	05:15 PM	51	63	76	1	8	78	50	0	64	113	29	0	110	123	17	0	783
	05:30 PM	56	45	61	0	13	103	35	0	47	93	17	0	119	109	20	0	718
	05:45 PM	37	40	47	0	11	90	36	0	35	109	6	0	103	93	19	0	626
	Total	178	209	265	1	47	376	159	2	244	435	83	2	434	484	68	0	2987
	Grand Total	1176	1603	1448	7	361	1333	548	12	792	1186	272	2	1431	1619	793	3	12586
	Apprch %	27.8	37.9	34.2	0.2	16	59.1	24.3	0.5	35.2	52.7	12.1	0.1	37.2	42.1	20.6	0.1	
	Total %	9.3	12.7	11.5	0.1	2.9	10.6	4.4	0.1	6.3	9.4	2.2	0	11.4	12.9	6.3	0	

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: WASHINGTON ST E/W STREET: HWY 224 CITY: DENVER COUNTY: DENVER File Name : WASHINGTON ST HWY 224 Site Code : 00000020 Start Date : 1/23/2025 Page No : 2

		WASI SOL	HINGT	TON S	Г		۲ WE	IWY 2 STBC	24 00ND			WAS NOF		TON S	Т		H EA	HWY 2 STBC	224 OUND		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour	Analys	is Fro	m 06::	30 AM	to 08:1	5 AM	- Peal	< 1 of	1												
Peak Hour f	for Ent	ire Inte	ersect	ion Be	gins at	07:15	AM														
07:15 AM	114	121	115	0	350	33	71	19	0	123	18	31	12	0	61	77	59	64	0	200	734
07:30 AM	91	133	124	0	348	41	76	19	0	136	18	29	4	0	51	53	72	76	1	202	737
07:45 AM	119	164	132	0	415	34	96	17	1	148	24	30	10	0	64	85	91	65	0	241	868
08:00 AM	113	159	106	0	378	33	95	24	0	152	23	37	6	0	66	60	103	61	0	224	820
Total Volume	437	577	477	0	1491	141	338	79	1	559	83	127	32	0	242	275	325	266	1	867	3159
% App. Total	29.3	38.7	32	0		25.2	60.5	14.1	0.2		34.3	52.5	13.2	0		31.7	37.5	30.7	0.1		
PHF	.918	.880	.903	.000	.898	.860	.880	.823	.250	.919	.865	.858	.667	.000	.917	.809	.789	.875	.250	.899	.910

1889 YORK ST DENVER COLORADO 303-333-7409

N/S STREET: WASHINGTON ST E/W STREET: HWY 224 CITY: DENVER COUNTY: DENVER File Name : WASHINGTON ST HWY 224 Site Code : 00000020 Start Date : 1/23/2025 Page No : 3

		WASI SOL	HING1		Т		H WE	HWY 2 STBC	24 UND			WAS NOF		TON S	т		EA	HWY 2 STBO	24 UND		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour /	Analys	is Fro	m 04:(00 PM	to 05:4	5 PM	- Pea	k 1 of	1												
Peak Hour f	or Ent	ire Int	ersect	ion Be	gins at	04:15	ΡM														
04:15 PM	45	62	80	1	188	17	70	59	1	147	90	146	28	0	264	121	123	19	1	264	863
04:30 PM	51	79	68	5	203	13	91	50	0	154	100	133	37	0	270	119	130	26	0	275	902
04:45 PM	44	69	58	0	171	9	95	69	7	180	76	130	41	0	247	127	124	18	0	269	867
05:00 PM	34	61	81	0	176	15	105	38	2	160	98	120	31	2	251	102	159	12	0	273	860
Total Volume	174	271	287	6	738	54	361	216	10	641	364	529	137	2	1032	469	536	75	1	1081	3492
% App. Total	23.6	36.7	38.9	0.8		8.4	56.3	33.7	1.6		35.3	51.3	13.3	0.2		43.4	49.6	6.9	0.1		
PHF	.853	.858	.886	.300	.909	.794	.860	.783	.357	.890	.910	.906	.835	.250	.956	.923	.843	.721	.250	.983	.968

LEVEL OF SERVICE DEFINITIONS From *Highway Capacity Manual*, Transportation Research Board

SIGNALIZED INTERSECTION LEVEL OF SERVICE (LOS)

LOS	<u>Average</u> <u>Vehicle Delay</u> sec/vehicle	Operational Characteristics
A	<10 seconds	Describes operations with low control delay, up to 10 sec/veh. This LOS occurs when progression is extremely favorable and most vehicles arrive during the green phase. Many vehicles do not stop at all. Short cycle lengths may tend to contribute to low delay values.
В	10 to 20 seconds	Describes operations with control delay greater than 10 seconds and up to 20 sec/veh. This level generally occurs with good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay.
C	20 to 35 seconds	Describes operations with control delay greater than 20 and up to 35 sec/veh. These higher delays may result from only fair progression, longer cycle length, or both. Individual cycle failures may begin to appear at this level. Cycle failure occurs when a given green phase does not serve queued vehicles, and overflows occur. The number of vehicles stopping is significant at this level, though many still pass through the intersection without stopping.
D	35 to 55 seconds	Describes operations with control delay greater than 35 and up to 55 sec/veh. At LOS D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, and high v/c ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.
E	55 to 80 seconds	Describes operations with control delay greater than 55 and up to 80 sec/veh. These high delay values generally indicate poor progression, long cycle lengths, and high v/c ratios. Individual cycle failures are frequent.
F	>80 seconds	Describes operations with control delay in excess of 80 sec/veh. This level, considered unacceptable to most drivers, often occurs with over-saturation, that is, when arrival flow rates exceed the capacity of lane groups. It may also occur at high v/c ratios with many individual cycle failures. Poor progression and long cycle lengths may also contribute significantly to high delay levels.

LEVEL OF SERVICE DEFINITIONS From *Highway Capacity Manual*, Transportation Research Board

UNSIGNALIZED INTERSECTION LEVEL OF SERVICE (LOS) Applicable to Two-Way Stop Control, All-Way Stop Control, and Roundabouts

LOS	Average Vehicle Control Delay	Operational Characteristics
A	<10 seconds	Normally, vehicles on the stop-controlled approach only have to wait up to 10 seconds before being able to clear the intersection. Left-turning vehicles on the uncontrolled street do not have to wait to make their turn.
В	10 to 15 seconds	Vehicles on the stop-controlled approach will experience delays before being able to clear the intersection. <u>The delay could be up</u> <u>to 15 seconds.</u> Left-turning vehicles on the uncontrolled street may have to wait to make their turn.
С	15 to 25 seconds	Vehicles on the stop-controlled approach can expect delays in the range of 15 to 25 seconds before clearing the intersection. Motorists may begin to take chances due to the long delays, thereby posing a safety risk to through traffic. Left-turning vehicles on the uncontrolled street will now be required to wait to make their turn causing a queue to be created in the turn lane.
D	25 to 35 seconds	This is the point at which a traffic signal may be warranted for this intersection. The delays for the stop-controlled intersection are not considered to be excessive. The length of the queue may begin to block other public and private access points.
E	35 to 50 seconds	The delays for all critical traffic movements are considered to be unacceptable. The length of the queues for the stop-controlled approaches as well as the left-turn movements are extremely long. <u>There is a high probability that this intersection will meet traffic</u> <u>signal warrants.</u> The ability to install a traffic signal is affected by the location of other existing traffic signals. Consideration may be given to restricting the accesses by eliminating the left-turn move- ments from and to the stop-controlled approach.
F	>50 seconds	The delay for the critical traffic movements are probably in excess of 100 seconds. The length of the queues are extremely long. Motorists are selecting alternative routes due to the long delays. <u>The only remedy for these long delays is installing a traffic signal</u> <u>or restricting the accesses</u> . The potential for accidents at this inter- section are extremely high due to motorist taking more risky chances. If the median permits, motorists begin making two-stage left-turns.

HCM 6th Signalized Intersection Summary 1: Washington St & E 78th Ave

	۶	+	*	4	-	•	1	t	1	1	ŧ	∢
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	↑	1	ሻ	↑	1	ኘ	**	1	ሻ	**	1
Traffic Volume (veh/h)	34	18	16	162	10	106	7	291	53	90	1226	20
Future Volume (veh/h)	34	18	16	162	10	106	7	291	53	90	1226	20
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	36	19	17	171	11	112	7	306	56	95	1291	21
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	264	293	248	275	293	248	322	2300	1026	815	2642	1179
Arrive On Green	0.16	0.16	0.16	0.16	0.16	0.16	1.00	1.00	1.00	0.05	0.74	0.74
Sat Flow, veh/h	1268	1870	1585	1372	1870	1585	419	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	36	19	17	171	11	112	7	306	56	95	1291	21
Grp Sat Flow(s),veh/h/ln	1268	1870	1585	1372	1870	1585	419	1777	1585	1781	1777	1585
Q Serve(g_s), s	2.5	0.9	0.9	12.1	0.5	6.4	0.1	0.0	0.0	1.6	14.6	0.3
Cycle Q Clear(g_c), s	3.0	0.9	0.9	13.0	0.5	6.4	5.1	0.0	0.0	1.6	14.6	0.3
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	264	293	248	275	293	248	322	2300	1026	815	2642	1179
V/C Ratio(X)	0.14	0.06	0.07	0.62	0.04	0.45	0.02	0.13	0.05	0.12	0.49	0.02
Avail Cap(c_a), veh/h	383	468	396	403	468	396	322	2300	1026	857	2642	1179
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	37.1	35.9	36.0	41.5	35.8	38.3	0.2	0.0	0.0	4.4	5.2	3.3
Incr Delay (d2), s/veh	0.2	0.1	0.1	2.3	0.1	1.3	0.1	0.1	0.1	0.1	0.6	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.8	0.4	0.4	4.2	0.2	2.5	0.0	0.0	0.0	0.5	4.1	0.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	37.3	36.0	36.1	43.8	35.8	39.6	0.3	0.1	0.1	4.4	5.8	3.4
LnGrp LOS	D	D	D	D	D	D	A	A	A	A	A	<u> </u>
Approach Vol, veh/h		72			294			369			1407	
Approach Delay, s/veh		36.7			41.9			0.1			5.7	
Approach LOS		D			D			А			А	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	9.6	69.7		20.6		79.4		20.6				
Change Period (Y+Rc), s	5.0	5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s	7.0	53.0		25.0		65.0		25.0				
Max Q Clear Time (g c+l1), s	3.6	7.1		5.0		16.6		15.0				
Green Ext Time (p_c), s	0.1	2.3		0.2		12.6		0.6				
Intersection Summarv												
HCM 6th Ctrl Delay			10.7									
HCM 6th LOS			В									

	▲	7	1	t.	ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1	3	***	***	
Traffic Volume (veh/h)	12	11	33	375	1500	52
Future Volume (veh/h)	12	11	33	375	1500	52
Initial Q (Qb) veh	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	1.00	1.00	1.00	J	- V	1.00
Parking Bus Adi	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac	h No			No	No	
Adi Sat Flow veh/h/ln	1870	1870	1870	1870	1870	1870
Adi Flow Rate veh/h	13	12	.36	412	1648	.57
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh %	2.01	2.01	2	2.01	2.01	2.01
Can veh/h	45	40	323	4468	4434	153
Arrive On Green	0.03	0 03	1 00	1 00	1 00	1 00
Sat Flow, yeb/h	1781	1585	287	527/	5236	175
	1701	1000	207	0214	1107	F00
Grp volume(v), ven/h	13	12	30	412	1107	598
Grp Sat Flow(s), veh/h/lr	11/81	1585	287	1/02	1/02	1839
Q Serve(g_s), s	0.7	0.7	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.7	0.7	0.0	0.0	0.0	0.0
Prop In Lane	1.00	1.00	1.00			0.10
Lane Grp Cap(c), veh/h	45	40	323	4468	2978	1609
V/C Ratio(X)	0.29	0.30	0.11	0.09	0.37	0.37
Avail Cap(c_a), veh/h	445	396	323	4468	2978	1609
HCM Platoon Ratio	1.00	1.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	n 47.9	47.9	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	3.5	4.2	0.7	0.0	0.4	0.7
Initial Q Delav(d3).s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%) veh	n/lr0.4	0.3	0.1	0.0	0.1	0.3
Unsig. Movement Delay	s/veh	0.0	0 .,	0.0		0.0
InGrn Delav(d) s/veh	51.4	52 1	07	0.0	04	07
		02.1 D	Δ	٥.٥	Δ	Δ
Approach Val. yeh/k	25	U	A	A	1705	A
Approach Vol, ven/n	20 51 7			440	1705	
Approach Delay, s/ven	51./			0.1	0.5	
Approach LUS	D			A	A	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc)	, S	92.5		7.5		92.5
Change Period (Y+Rc),	S	5.0		5.0		5.0
Max Green Setting (Gm	ax), s	65.0		25.0		65.0
Max Q Clear Time (g c-	+l1). s	2.0		2.7		2.0
Green Ext Time (p_c), s	;,,,,,	4.1		0.0		18.4
Intersection Summary						
HCM 6th Ctrl Delay			1.0			
HCM 6th LOS			A			
			Л			

0.2

Intersection

Int Delay, s/veh

Movement E	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		٢	<u> ተ</u> ቀኁ		5	ተ ቶፑ›	
Traffic Vol, veh/h	3	0	8	0	0	0	29	435	0	0	1510	2
Future Vol, veh/h	3	0	8	0	0	0	29	435	0	0	1510	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control S	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	50	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	3	0	8	0	0	0	31	458	0	0	1589	2

Major/Minor	Minor2		1	Minor1		ľ	Major1		Ν	/lajor2				
Conflicting Flow All	1835	2110	796	1156	2111	229	1591	0	0	458	0	0		
Stage 1	1590	1590	-	520	520	-	-	-	-	-	-	-		
Stage 2	245	520	-	636	1591	-	-	-	-	-	-	-		
Critical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34	-	-	5.34	-	-		
Critical Hdwy Stg 1	7.34	5.54	-	7.34	5.54	-	-	-	-	-	-	-		
Critical Hdwy Stg 2	6.74	5.54	-	6.74	5.54	-	-	-	-	-	-	-		
Follow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12	-	-	3.12	-	-		
Pot Cap-1 Maneuver	*504	*458	*575	*504	*457	*834	*722	-	-	992	-	-		
Stage 1	*590	*561	-	*713	*722	-	-	-	-	-	-	-		
Stage 2	*855	*722	-	*590	*561	-	-	-	-	-	-	-		
Platoon blocked, %	1	1	1	1	1	1	1	-	-	1	-	-		
Mov Cap-1 Maneuver	*487	*438	*575	*480	*437	*834	*722	-	-	992	-	-		
Mov Cap-2 Maneuver	*487	*438	-	*480	*437	-	-	-	-	-	-	-		
Stage 1	*564	*561	-	*682	*691	-	-	-	-	-	-	-		
Stage 2	*819	*691	-	*581	*561	-	-	-	-	-	-	-		
Approach	EB			WB			NB			SB				
HCM Control Delay, s	s 11.7			0			0.6			0				
HCM LOS	В			А										
Minor Lane/Major Mvi	mt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR					
Capacity (veh/h)		* 722	-	-	548	-	992	-	-					
HCM Lane V/C Ratio		0.042	-	-	0.021	-	-	-	-					
HCM Control Delay (s	6)	10.2	-	-	11.7	0	0	-	-					
HCM Lane LOS	,	В	-	-	В	А	А	-	-					
HCM 95th %tile Q(vel	h)	0.1	-	-	0.1	-	0	-	-					
Notes														
~: Volume exceeds ca	apacity	\$ De	lav exc	eeds 3	00s -	+. Com	outation	Not De	fined	*· All 1	maior vol	ume in	platoon	
	apaony	ψ. Βυ		0000			Jacuton			. / 41 1			platoon	

HCM 6th Signalized Intersection Summary 4: Washington St & Boyer's Driveway/E 73rd Ave

Exis	ting
AM	Peak

	٠	→	7	4	+	*	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ţ,		1	ħ		۲	11	1	۲	**	
Traffic Volume (veh/h)	0	0	1	18	0	27	0	435	27	31	1485	0
Future Volume (veh/h)	0	0	1	18	0	27	0	435	27	31	1485	0
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	0	0	1	19	0	28	0	458	28	33	1563	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	72	0	58	123	0	58	72	3067	1368	857	4407	0
Arrive On Green	0.00	0.00	0.04	0.04	0.00	0.04	0.00	1.00	1.00	1.00	1.00	0.00
Sat Flow, veh/h	1382	0	1585	1416	0	1585	329	3554	1585	910	5274	0
Grp Volume(v), veh/h	0	0	1	19	0	28	0	458	28	33	1563	0
Grp Sat Flow(s),veh/h/ln	1382	0	1585	1416	0	1585	329	1777	1585	910	1702	0
Q Serve(g s), s	0.0	0.0	0.1	1.3	0.0	1.7	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g c), s	0.0	0.0	0.1	1.4	0.0	1.7	0.0	0.0	0.0	0.0	0.0	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	72	0	58	123	0	58	72	3067	1368	857	4407	0
V/C Ratio(X)	0.00	0.00	0.02	0.15	0.00	0.48	0.00	0.15	0.02	0.04	0.35	0.00
Avail Cap(c a), veh/h	367	0	396	425	0	396	72	3067	1368	857	4407	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	0.00	0.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	0.0	0.0	46.4	47.1	0.0	47.2	0.0	0.0	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.1	0.6	0.0	6.0	0.0	0.1	0.0	0.1	0.2	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	0.0	0.0	0.5	0.0	0.8	0.0	0.0	0.0	0.0	0.1	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	0.0	0.0	46.5	47.6	0.0	53.2	0.0	0.1	0.0	0.1	0.2	0.0
LnGrp LOS	А	А	D	D	А	D	А	А	А	А	А	А
Approach Vol, veh/h		1			47			486			1596	
Approach Delay, s/veh		46.5			51.0			0.1			0.2	
Approach LOS		D			D			А			А	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		91.3		8.7		91.3		8.7				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		65.0		25.0		65.0		25.0				
Max Q Clear Time (g_c+l1), s		2.0		2.1		2.0		3.7				
Green Ext Time (p_c), s		3.2		0.0		17.5		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			1.3									
HCM 6th LOS			Α									

\$	*	*	t	1	1	ŧ			
Movement WBL	WBR	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	1	1	4 4 %		5	***			
Traffic Volume (veh/h) 10	27	27	436	22	28	1479			
Future Volume (veh/h) 10	27	27	436	22	28	1479			
Initial Q (Qb), veh 0	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT) 1.00	1.00	1.00		1.00	1.00				
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Work Zone On Approach No			No			No			
Adj Sat Flow, veh/h/ln 1870	1870	1870	1870	1870	1870	1870			
Adj Flow Rate, veh/h 11	28	28	459	23	29	1557			
Peak Hour Factor 0.95	0.95	0.95	0.95	0.95	0.95	0.95			
Percent Heavy Veh, % 2	2	2	2	2	2	2			
Cap, veh/h 59	68	68	4319	215	864	4427			
Arrive On Green 0.03	0.04	0.04	1.00	1.00	1.00	1.00			
Sat Flow, veh/h 1781	1585	1585	5150	248	913	5274			
Grp Volume(v), veh/h 11	28	28	313	169	29	1557			
Grp Sat Flow(s),veh/h/ln1781	1585	1585	1702	1826	913	1702			
Q Serve(g_s), s 0.6	1.7	1.7	0.0	0.0	0.0	0.0			
Cycle Q Clear(g_c), s 0.6	1.7	1.7	0.0	0.0	0.0	0.0			
Prop In Lane 1.00	1.00	1.00		0.14	1.00				
Lane Grp Cap(c), veh/h 59	68	68	2951	1583	864	4427			
V/C Ratio(X) 0.19	0.41	0.41	0.11	0.11	0.03	0.35			
Avail Cap(c_a), veh/h 445	412	412	2951	1583	864	4427			
HCM Platoon Ratio 1.00	1.00	1.00	2.00	2.00	2.00	2.00			
Upstream Filter(I) 1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Uniform Delay (d), s/veh 47.0	46.6	46.6	0.0	0.0	0.0	0.0			
Incr Delay (d2), s/veh 1.5	3.9	3.9	0.1	0.1	0.1	0.2			
Initial Q Delay(d3).s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh/Ir0.3	0.8	0.8	0.0	0.1	0.0	0.1			
Unsig. Movement Delay. s/ve	h					•••			
LnGrp Delay(d).s/veh 48.5	50.5	50.5	0.1	0.1	0.1	0.2			
LnGrp LOS D	D	D	Α	Α	А	A			
Approach Vol. veh/h 39		_	482			1586		Į	
Approach Delay s/veh 50.0			0.1			0.2			
Approach LOS			Δ			Δ			
			Λ			7			
Timer - Assigned Phs	2	2				6	8		
Phs Duration (G+Y+Rc), s	91.7	91.7				91.7	8.3		
Change Period (Y+Rc), s	5.0	5.0				5.0	5.0		
Max Green Setting (Gmax), s	65.0	65.0				65.0	25.0		
Max Q Clear Time (g_c+I1), s	3 2.0	2.0				2.0	3.7		
Green Ext Time (p_c), s	3.1	3.1				17.3	0.1		
Intersection Summary									
HCM 6th Ctrl Delav			1.1						
HCM 6th LOS			А						

HCM 6th Signalized Intersection Summary 6: Washington St & E 70th Ave

* + + < + * * + * + * * * *

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻሻ	**	1	1	††	1	1	* 1>		٦	††	1	
Traffic Volume (veh/h)	275	325	266	141	338	79	83	127	32	437	577	477	
Future Volume (veh/h)	275	325	266	141	338	79	83	127	32	437	577	477	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	289	342	0	148	356	0	87	134	0	460	607	0	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	346	1488		178	1488		221	253		472	754		
Arrive On Green	0.10	0.42	0.00	0.10	0.42	0.00	0.06	0.07	0.00	0.27	0.28	0.00	
Sat Flow, veh/h	3456	3554	1585	1781	3554	1585	1781	3647	0	1781	3554	1585	
Grp Volume(v), veh/h	289	342	0	148	356	0	87	134	0	460	607	0	
Grp Sat Flow(s), veh/h/li	า1728	1777	1585	1781	1777	1585	1781	1777	0	1781	1777	1585	
Q Serve(g_s), s	8.2	6.2	0.0	8.2	6.5	0.0	4.5	3.6	0.0	20.0	15.9	0.0	
Cycle Q Clear(g_c), s	8.2	6.2	0.0	8.2	6.5	0.0	4.5	3.6	0.0	20.0	15.9	0.0	
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.00	1.00		1.00	
Lane Grp Cap(c), veh/h	346	1488		178	1488		221	253		472	754		
V/C Ratio(X)	0.84	0.23		0.83	0.24		0.39	0.53		0.97	0.80		
Avail Cap(c_a), veh/h	346	1488		178	1488		240	711		472	1173		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	
Uniform Delay (d), s/vel	n 44.2	18.7	0.0	44.2	18.8	0.0	39.8	44.8	0.0	32.5	34.0	0.0	
Incr Delay (d2), s/veh	16.2	0.4	0.0	27.1	0.4	0.0	1.1	1.7	0.0	34.7	2.3	0.0	
Initial Q Delay(d3),s/vel	n 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh	n/In4.2	2.5	0.0	4.8	2.6	0.0	2.0	1.6	0.0	14.1	6.3	0.0	
Unsig. Movement Delay	/, s/veh												
LnGrp Delay(d),s/veh	60.4	19.0	0.0	71.2	19.2	0.0	40.9	46.5	0.0	67.2	36.3	0.0	
LnGrp LOS	E	В		E	В		D	D		E	D		
Approach Vol, veh/h		631			504			221			1067		
Approach Delay, s/veh		38.0			34.5			44.3			49.6		
Approach LOS		D			С			D			D		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)	, 285.0	12.1	15.0	47.9	10.9	26.2	15.0	47.9					
Change Period (Y+Rc),	s 5.0	5.0	5.0	6.0	5.0	5.0	5.0	6.0					
Max Green Setting (Gm	a 20 ,.6	20.0	10.0	29.0	7.0	33.0	10.0	29.0					
Max Q Clear Time (g_c	+1212),0s	5.6	10.2	8.2	6.5	17.9	10.2	8.5					
Green Ext Time (p_c), s	6 0.0	0.5	0.0	2.0	0.0	3.4	0.0	2.1					
Intersection Summary													
HCM 6th Ctrl Delay			43.0										
HCM 6th LOS			D										

Notes

User approved pedestrian interval to be less than phase max green. Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

HCM 6th Signalized Intersection Summary 1: Washington St & E 78th Ave

	≯	→	7	•	-	•	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	†	1	ľ	•	1	7	**	1	ľ	**	1
Traffic Volume (veh/h)	27	4	5	63	1	90	8	1005	99	104	458	34
Future Volume (veh/h)	27	4	5	63	1	90	8	1005	99	104	458	34
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	28	4	5	66	1	95	8	1058	104	109	482	36
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	178	154	130	185	154	130	708	2560	1142	505	2906	1296
Arrive On Green	0.08	0.08	0.08	0.08	0.08	0.08	1.00	1.00	1.00	0.05	0.82	0.82
Sat Flow, veh/h	1300	1870	1585	1406	1870	1585	883	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	28	4	5	66	1	95	8	1058	104	109	482	36
Grp Sat Flow(s),veh/h/ln	1300	1870	1585	1406	1870	1585	883	1777	1585	1781	1777	1585
Q Serve(g_s), s	2.0	0.2	0.3	4.5	0.0	5.9	0.0	0.0	0.0	1.4	2.9	0.4
Cycle Q Clear(g_c), s	2.1	0.2	0.3	4.7	0.0	5.9	0.0	0.0	0.0	1.4	2.9	0.4
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	178	154	130	185	154	130	708	2560	1142	505	2906	1296
V/C Ratio(X)	0.16	0.03	0.04	0.36	0.01	0.73	0.01	0.41	0.09	0.22	0.17	0.03
Avail Cap(c_a), veh/h	396	468	396	421	468	396	708	2560	1142	545	2906	1296
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	43.1	42.2	42.3	44.4	42.1	44.8	0.0	0.0	0.0	2.4	1.9	1.7
Incr Delay (d2), s/veh	0.4	0.1	0.1	1.2	0.0	7.6	0.0	0.5	0.2	0.2	0.1	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.7	0.1	0.1	1.6	0.0	2.5	0.0	0.2	0.1	0.3	0.5	0.1
Unsig. Movement Delay, s/veh	10 5	10.0	40.4	45.0	40.0	50.4	0.0	0.5	0.0	0.0	0.0	4 7
LnGrp Delay(d),s/veh	43.5	42.3	42.4	45.6	42.2	52.4	0.0	0.5	0.2	2.6	2.0	1./
LnGrp LOS	D		D	D	D	D	A	A	A	A	A	A
Approach Vol, veh/h		37			162			11/0			627	
Approach Delay, s/veh		43.2			49.6			0.5			2.1	
Approach LOS		D			D			A			A	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	9.8	77.0		13.2		86.8		13.2				
Change Period (Y+Rc), s	5.0	5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s	7.0	53.0		25.0		65.0		25.0				
Max Q Clear Time (g_c+I1), s	3.4	2.0		4.1		4.9		7.9				
Green Ext Time (p_c), s	0.1	9.8		0.1		3.5		0.4				
Intersection Summary												
HCM 6th Ctrl Delay			5.8									
HCM 6th LOS			Α									

و		7	1	t	ŧ	~
Movement EB	3L	EBR	NBL	NBT	SBT	SBR
Lane Configurations	۲	1	5	***	** L	
Traffic Volume (veh/h) 2	27	12	2	1180	575	2
Future Volume (veh/h) 2	 97	12	2	1180	575	2
Initial Q (Qb) veh	0	0	0	0	0	0
Ped-Bike Adi(A nbT) 10	00	1.00	1.00	J		1.00
Parking Bus, Adi 1.0	0	1.00	1.00	1.00	1.00	1.00
Work Zone On Annroach N	lo			No	No	1.00
Adi Sat Flow, veh/h/ln 187	'0	1870	1870	1870	1870	1870
Adi Flow Rate veh/h 2	28	12	2	1229	599	2
Peak Hour Factor 0.0	96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh %	2	2.50	0.00	2.00	2.00	2.50
Can veh/h	2	2 53	∠ 781	4424	∠ 4552	15
Arrive On Green	13	0.03	1 00	1 00	1 00	1 00
Sat Flow, yeb/b 170	21	1585	1.00 Q1Q	527/	5/22	1.00
		1000	010	3274	0422	10
Grp Volume(v), veh/h 2	28	12	2	1229	388	213
Grp Sat Flow(s),veh/h/ln178	31	1585	818	1702	1702	1867
Q Serve(g_s), s 1.	.5	0.7	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s 1.	.5	0.7	0.0	0.0	0.0	0.0
Prop In Lane 1.0	00	1.00	1.00			0.01
Lane Grp Cap(c), veh/h 6	60	53	781	4424	2949	1618
V/C Ratio(X) 0.4	7	0.23	0.00	0.28	0.13	0.13
Avail Cap(c_a), veh/h 44	5	396	781	4424	2949	1618
HCM Platoon Ratio 1.0)0	1.00	2.00	2.00	2.00	2.00
Upstream Filter(I) 1.0)0	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d). s/veh 47	.4	47.1	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh 5	.6	2.1	0.0	0.2	0.1	0.2
Initial O Delay(d3) s/veh	0	0.0	0.0	0.0	0.0	0.0
%ile BackOfO(50%) veh/lm	8	0.0	0.0	0.0	0.0	0.0
Unsig Movement Delay, sh	.0 /oh	0.5	0.0	0.1	0.0	0.1
LnGrn Doloy(d) olycob	1	10.0	0.0	0.0	0.1	0.0
LIGIP Delay(d), s/ven 53.	. I	49.Z	0.0	0.2	U. I	0.2
	U	U	А	A	A	A
Approach Vol, veh/h 4	10			1231	601	
Approach Delay, s/veh 51.	.9			0.2	0.1	
Approach LOS	D			A	A	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s		91.6		8.4		91.6
Change Period (Y+Rc). s		5.0		5.0		5.0
Max Green Setting (Gmax)	S	65.0		25.0		65.0
Max Q Clear Time $(q, c+11)$	S	2.0		3.5		2.0
Green Ext Time (n_c) s	, 0	11.4		0.1		4.0
Interportion Summer		11.7		0.1		-1.0
Intersection Summary						
HCM 6th Ctrl Delay			1.2			
HCM 6th LOS			A			

0.2

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		ľ	乔乔 萨		1	4 4 %	
Traffic Vol, veh/h	4	0	15	0	0	0	16	1260	0	0	610	2
Future Vol, veh/h	4	0	15	0	0	0	16	1260	0	0	610	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	50	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	0	16	0	0	0	17	1326	0	0	642	2

Major/Minor	Minor2		Ν	Minor1		Ν	/lajor1		Ν	/lajor2				
Conflicting Flow All	1207	2003	322	1617	2004	663	644	0	0	1326	0	0		
Stage 1	643	643	-	1360	1360	-	-	-	-	-	-	-		
Stage 2	564	1360	-	257	644	-	-	-	-	-	-	-		
Critical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34	-	-	5.34	-	-		
Critical Hdwy Stg 1	7.34	5.54	-	7.34	5.54	-	-	-	-	-	-	-		
Critical Hdwy Stg 2	6.74	5.54	-	6.74	5.54	-	-	-	-	-	-	-		
Follow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12	-	-	3.12	-	-		
Pot Cap-1 Maneuver	*616	*143	*782	*304	*143	*626	*983	-	-	*787	-	-		
Stage 1	*802	*763	-	*643	*611	-	-	-	-	-	-	-		
Stage 2	*643	*611	-	*802	*763	-	-	-	-	-	-	-		
Platoon blocked, %	1	1	1	1	1	1	1	-	-	1	-	-		
Mov Cap-1 Maneuver	*608	*141	*782	*294	*141	*626	*983	-	-	*787	-	-		
Mov Cap-2 Maneuver	*608	*141	-	*294	*141	-	-	-	-	-	-	-		
Stage 1	*789	*763	-	*632	*601	-	-	-	-	-	-	-		
Stage 2	*632	*601	-	*786	*763	-	-	-	-	-	-	-		
Approach	EB			WB			NB			SB				
HCM Control Delay, s	; 10			0			0.1			0				
HCM LOS	В			А										
Minor Lane/Major Mv	mt	NBL	NBT	NBR I	EBLn1V	/BLn1	SBL	SBT	SBR					
Capacity (veh/h)		* 983	-	-	738	-	* 787	-	-					
HCM Lane V/C Ratio		0.017	-	-	0.027	-	-	-	-					
HCM Control Delay (s	5)	8.7	-	-	10	0	0	-	-					
HCM Lane LOS	,	А	-	-	В	А	А	-	-					
HCM 95th %tile Q(vel	า)	0.1	-	-	0.1	-	0	-	-					
Notes														
~: Volume exceeds ca	apacity	\$: De	lay exc	eeds 30)0s -	+: Comp	outation	Not De	fined	*: All r	najor volu	ume in p	latoon	

HCM 6th Signalized Intersection Summary 4: Washington St & Boyer's Driveway/E 73rd Ave

Existing	
PM Peak	

	٠	→	\mathbf{r}	4	+	•	1	t	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ħ		7	Þ		ሻ	^	1	ሻ	** 12	
Traffic Volume (veh/h)	0	0	0	34	1	116	0	1160	56	15	610	0
Future Volume (veh/h)	0	0	0	34	1	116	0	1160	56	15	610	0
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	0	0	0	36	1	122	0	1221	59	16	642	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	72	189	0	252	1	159	72	2839	1266	417	4079	0
Arrive On Green	0.00	0.00	0.00	0.10	0.10	0.10	0.00	1.00	1.00	1.00	1.00	0.00
Sat Flow, veh/h	1268	1870	0	1781	13	1574	787	3554	1585	432	5274	0
Grp Volume(v), veh/h	0	0	0	36	0	123	0	1221	59	16	642	0
Grp Sat Flow(s),veh/h/ln	1268	1870	0	1781	0	1587	787	1777	1585	432	1702	0
Q Serve(g s), s	0.0	0.0	0.0	1.9	0.0	7.6	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g c), s	0.0	0.0	0.0	1.9	0.0	7.6	0.0	0.0	0.0	0.0	0.0	0.0
Prop In Lane	1.00		0.00	1.00		0.99	1.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	72	189	0	252	0	160	72	2839	1266	417	4079	0
V/C Ratio(X)	0.00	0.00	0.00	0.14	0.00	0.77	0.00	0.43	0.05	0.04	0.16	0.00
Avail Cap(c_a), veh/h	261	468	0	517	0	397	72	2839	1266	417	4079	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	0.00	0.00	0.00	1.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	0.0	0.0	0.0	41.2	0.0	43.8	0.0	0.0	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.3	0.0	7.4	0.0	0.5	0.1	0.2	0.1	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	0.0	0.0	0.8	0.0	3.3	0.0	0.2	0.0	0.0	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	0.0	0.0	0.0	41.5	0.0	51.2	0.0	0.5	0.1	0.2	0.1	0.0
LnGrp LOS	А	А	А	D	А	D	А	А	А	А	А	Α
Approach Vol, veh/h		0			159			1280			658	
Approach Delay, s/veh		0.0			49.0			0.5			0.1	
Approach LOS					D			А			А	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		84.9		15.1		84.9		15.1				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		65.0		25.0		65.0		25.0				
Max Q Clear Time (g c+l1), s		2.0		0.0		2.0		9.6				
Green Ext Time (p_c), s		12.1		0.0		5.1		0.7				
Intersection Summary												
HCM 6th Ctrl Delay			4.0									
HCM 6th LOS			А									

	1	*	t	1	1	ŧ		
Movement W	/BL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	3	1	**1		5	444		
Traffic Volume (veh/h)	30	34	1180	16	21	612		
Future Volume (veh/h)	30	34	1180	16	21	612		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT) 1.	.00	1.00		1.00	1.00			
Parking Bus, Adj 1.	.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach	No		No			No		
Adj Sat Flow, veh/h/ln 18	370	1870	1870	1870	1870	1870		
Adj Flow Rate, veh/h	32	36	1242	17	22	644		
Peak Hour Factor 0.	.95	0.95	0.95	0.95	0.95	0.95		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	76	67	4451	61	450	4379		
Arrive On Green 0.	.04	0.04	1.00	1.00	1.00	1.00		
Sat Flow, veh/h 17	781	1585	5359	71	441	5274		
Grp Volume(v), veh/h	32	36	814	445	22	644		
Grp Sat Flow(s).veh/h/ln17	781	1585	1702	1858	441	1702		
Q Serve(g s), s	1.8	2.2	0.0	0.0	0.0	0.0		
Cycle Q Clear(q c), s	1.8	2.2	0.0	0.0	0.0	0.0		
Prop In Lane 1.	.00	1.00		0.04	1.00			
Lane Grp Cap(c), veh/h	76	67	2919	1593	450	4379		
V/C Ratio(X) 0.	.42	0.54	0.28	0.28	0.05	0.15		
Avail Cap(c a), veh/h 4	145	396	2919	1593	450	4379		
HCM Platoon Ratio 1.	.00	1.00	2.00	2.00	2.00	2.00		
Upstream Filter(I) 1.	.00	1.00	1.00	1.00	1.00	1.00		
Uniform Delay (d), s/veh 46	6.7	46.9	0.0	0.0	0.0	0.0		
Incr Delay (d2), s/veh	3.7	6.5	0.2	0.4	0.2	0.1		
Initial Q Delav(d3).s/veh (0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%).veh/ln	0.9	1.0	0.1	0.2	0.0	0.0		
Unsig. Movement Delay. s/	/veh							
LnGrp Delay(d).s/veh 50	0.4	53.4	0.2	0.4	0.2	0.1		
LnGrp LOS	D	D	A	A	А	А		
Approach Vol. veh/h	68		1259			666		
Approach Delay, s/veh 52	2.0		0.3			0.1		
Approach LOS	D		A			A		
		^						
Timer - Assigned Phs		2				6	8	
Phs Duration (G+Y+Rc), s		90.8				90.8	9.2	
Change Period (Y+Rc), s		5.0				5.0	5.0	
Max Green Setting (Gmax)), S	65.0				65.0	25.0	
Max Q Clear Time (g_c+l1), s	2.0				2.0	4.2	
Green Ext Time (p_c), s		10.8				5.2	0.1	
Intersection Summary								
HCM 6th Ctrl Delay			2.0					
HCM 6th LOS			А					

HCM 6th Signalized Intersection Summary 6: Washington St & E 70th Ave

* + + < + * * + * + * * * *

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	57	11	1	1	11	1	1	*		1	11	1	
Traffic Volume (veh/h)	469	536	75	54	361	216	364	529	137	174	271	287	
Future Volume (veh/h)	469	536	75	54	361	216	364	529	137	174	271	287	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	:h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	494	564	0	57	380	0	383	557	0	183	285	0	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	553	1603		74	1217		424	702		291	525		
Arrive On Green	0.16	0.45	0.00	0.04	0.34	0.00	0.15	0.20	0.00	0.17	0.25	0.00	
Sat Flow, veh/h	3456	3554	1585	1781	3554	1585	1781	3647	0	1781	3554	1585	
Grp Volume(v), veh/h	494	564	0	57	380	0	383	557	0	183	285	0	
Grp Sat Flow(s),veh/h/lr	า1728	1777	1585	1781	1777	1585	1781	1777	0	1781	1777	1585	
Q Serve(g_s), s	14.0	10.4	0.0	3.2	7.9	0.0	15.0	14.9	0.0	8.6	7.0	0.0	
Cycle Q Clear(g_c), s	14.0	10.4	0.0	3.2	7.9	0.0	15.0	14.9	0.0	8.6	7.0	0.0	
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.00	1.00		1.00	
Lane Grp Cap(c), veh/h	553	1603		74	1217		424	702		291	525		
V/C Ratio(X)	0.89	0.35		0.77	0.31		0.90	0.79		0.63	0.54		
Avail Cap(c_a), veh/h	553	1603		178	1217		424	1066		291	888		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.67	1.67	1.67	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	
Uniform Delay (d), s/vel	n 41.2	17.9	0.0	47.5	24.2	0.0	32.2	38.2	0.0	29.8	34.7	0.0	
Incr Delay (d2), s/veh	16.8	0.6	0.0	15.7	0.7	0.0	22.1	2.4	0.0	4.2	0.9	0.0	
Initial Q Delay(d3),s/veh	n 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh	n/In7.1	4.1	0.0	1.7	3.3	0.0	4.3	6.5	0.0	3.6	2.8	0.0	
Unsig. Movement Delay	/, s/veh												
LnGrp Delay(d),s/veh	58.0	18.5	0.0	63.2	24.9	0.0	54.3	40.6	0.0	34.0	35.6	0.0	
LnGrp LOS	E	В		E	С		D	D		С	D		
Approach Vol, veh/h		1058			437			940			468		
Approach Delay, s/veh		37.0			29.9			46.2			35.0		
Approach LOS		D			С			D			С		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)	, \$5.0	24.8	9.1	51.1	20.0	19.8	20.0	40.2					
Change Period (Y+Rc),	s 5.0	5.0	5.0	6.0	5.0	5.0	5.0	6.0					
Max Green Setting (Gm	ax0G	30.0	10.0	29.0	15.0	25.0	15.0	24.0					
Max Q Clear Time (q c	+1110.6s	16.9	5.2	12.4	17.0	9.0	16.0	9.9					
Green Ext Time (p_c), s	s 0.0	2.9	0.0	3.2	0.0	1.4	0.0	1.9					
Intersection Summary													
HCM 6th Ctrl Delay			38.6										
HCM 6th LOS			D										

Notes

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

HCM 6th Signalized Intersection Summary 1: Washington St & E 78th Ave

	٠	→	\mathbf{r}	4	+	•	1	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	•	1	7	•	1	7	1	1	7	1	1
Traffic Volume (veh/h)	34	18	17	167	10	109	8	300	55	93	1265	20
Future Volume (veh/h)	34	18	17	167	10	109	8	300	55	93	1265	20
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	36	19	18	176	11	115	8	316	58	98	1332	21
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	268	300	254	280	300	254	307	2285	1019	804	2629	1173
Arrive On Green	0.16	0.16	0.16	0.16	0.16	0.16	1.00	1.00	1.00	0.05	0.74	0.74
Sat Flow, veh/h	1265	1870	1585	1371	1870	1585	403	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	36	19	18	176	11	115	8	316	58	98	1332	21
Grp Sat Flow(s),veh/h/ln	1265	1870	1585	1371	1870	1585	403	1777	1585	1781	1777	1585
Q Serve(g_s), s	2.5	0.9	1.0	12.5	0.5	6.6	0.2	0.0	0.0	1.7	15.6	0.3
Cycle Q Clear(g_c), s	3.0	0.9	1.0	13.4	0.5	6.6	6.1	0.0	0.0	1.7	15.6	0.3
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	268	300	254	280	300	254	307	2285	1019	804	2629	1173
V/C Ratio(X)	0.13	0.06	0.07	0.63	0.04	0.45	0.03	0.14	0.06	0.12	0.51	0.02
Avail Cap(c_a), veh/h	382	468	396	403	468	396	307	2285	1019	845	2629	1173
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	36.7	35.6	35.7	41.3	35.5	38.0	0.3	0.0	0.0	4.5	5.4	3.4
Incr Delay (d2), s/veh	0.2	0.1	0.1	2.3	0.0	1.3	0.2	0.1	0.1	0.1	0.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.8	0.4	0.4	4.3	0.2	0.1	0.0	0.0	0.0	0.5	4.4	0.1
Unsig. Movement Delay, s/veh								• •	• •		• •	
LnGrp Delay(d),s/veh	37.0	35.7	35.8	43.6	35.5	39.3	0.4	0.1	0.1	4.5	6.1	3.5
LnGrp LOS	D	<u>D</u>	D	D	D	D	A	<u>A</u>	A	A	<u>A</u>	<u> </u>
Approach Vol, veh/h		73			302			382			1451	
Approach Delay, s/veh		36.3			41.7			0.1			6.0	
Approach LOS		D			D			A			A	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	9.7	69.3		21.0		79.0		21.0				
Change Period (Y+Rc), s	5.0	5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s	7.0	53.0		25.0		65.0		25.0				
Max Q Clear Time (g_c+l1), s	3.7	8.1		5.0		17.6		15.4				
Green Ext Time (p_c), s	0.1	2.4		0.2		13.2		0.7				
Intersection Summary												
HCM 6th Ctrl Delay			10.8									
HCM 6th LOS			В									

-	٠	¥	1	t	ŧ	4
Movement E	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	٦	1	٦	***	4 4 %	
Traffic Volume (veh/h)	15	15	35	390	1545	55
Future Volume (veh/h)	15	15	35	390	1545	55
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1	1.00	1.00	1.00			1.00
Parking Bus, Adj 1	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln 1	870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	16	16	38	429	1698	60
Peak Hour Factor 0	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	52	47	309	4445	4408	156
Arrive On Green 0	0.03	0.03	1.00	1.00	1.00	1.00
Sat Flow, veh/h 1	781	1585	273	5274	5232	179
Grn Volume(v) veh/h	16	16	38	429	1141	617
Grn Sat Flow(s) veh/h/ln1	781	1585	273	1702	1702	1838
O Serve(a, s) s	00	1000	0.0	0.0	0.0	0.0
Q Serve(\underline{y} _s), s	0.9	1.0	0.0	0.0	0.0	0.0
Cycle Q Clear (g_c) , s	0.9	1.0	1.00	0.0	0.0	0.0
Prop in Lane	1.00	1.00	1.00	111E	2062	0.10
Lane Grp Cap(c), ven/n	52	47	309	4445	2963	1600
	J.31	0.34	0.12	0.10	0.39	0.39
Avail Cap(c_a), veh/h	445	396	309	4445	2963	1600
HCM Platoon Ratio 1	1.00	1.00	2.00	2.00	2.00	2.00
Upstream Filter(I) 1	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 4	47.5	47.6	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	3.2	4.3	0.8	0.0	0.4	0.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/li	r0.4	0.4	0.1	0.0	0.2	0.3
Unsig. Movement Delay, s	s/veh					
LnGrp Delay(d),s/veh 5	50.7	51.9	0.8	0.0	0.4	0.7
LnGrp LOS	D	D	А	А	А	А
Approach Vol. veh/h	32	_	,.	467	1758	73
Approach Delay s/veh	51 3			0.1	0.5	
Approach LOS	ס.וכ ח			٥.١	0.0	
	U			A	А	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s	s	92.1		7.9		92.1
Change Period (Y+Rc). s		5.0		5.0		5.0
Max Green Setting (Gmax	x), s	65.0		25.0		65.0
Max Q Clear Time (g. c+1	1), s	2.0		3.0		2.0
Green Ext Time (p c), s	.,, •	4.4		0.1		19.5
Intersection Summary						
			4.4			
			1.1			
HCM 6th LOS			A			

0.3

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		٦	<u> ተ</u> ተኩ		٦	**i	
Traffic Vol, veh/h	3	1	10	5	1	5	29	450	5	5	1555	3
Future Vol, veh/h	3	1	10	5	1	5	29	450	5	5	1555	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	50	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	3	1	11	5	1	5	31	474	5	5	1637	3

Major/Minor	Minor2		N	/linor1			Major1		Ν	/lajor2			
Conflicting Flow All	1901	2190	820	1204	2189	240	1640	0	0	479	0	0	
Stage 1	1649	1649	-	539	539	-	-	-	-	-	-	-	
Stage 2	252	541	-	665	1650	-	-	-	-	-	-	-	
Critical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34	-	-	5.34	-	-	
Critical Hdwy Stg 1	7.34	5.54	-	7.34	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.74	5.54	-	6.74	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12	-	-	3.12	-	-	
Pot Cap-1 Maneuver	*504	*379	*575	*504	*380	*834	*722	-	-	968	-	-	
Stage 1	*590	*561	-	*690	*707	-	-	-	-	-	-	-	
Stage 2	*855	*705	-	*590	*561	-	-	-	-	-	-	-	
Platoon blocked, %	1	1	1	1	1	1	1	-	-	1	-	-	
Mov Cap-1 Maneuver	*481	*360	*575	*476	*361	*834	*722	-	-	968	-	-	
Mov Cap-2 Maneuver	*481	*360	-	*476	*361	-	-	-	-	-	-	-	
Stage 1	*564	*558	-	*660	*677	-	-	-	-	-	-	-	
Stage 2	*812	*675	-	*575	*558	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	; 12			11.4			0.6			0			
HCM LOS	В			В									
Minor Lane/Major Mvi	mt	NBL	NBT	NBR I	EBLn1V	/BLn1	SBL	SBT	SBR				
Capacity (veh/h)		* 722	-	-	530	571	968	-	-				
HCM Lane V/C Ratio		0.042	-	-	0.028	0.02	0.005	-	-				
HCM Control Delay (s	3)	10.2	-	-	12	11.4	8.7	-	-				
HCM Lane LOS	/	В	-	-	В	В	А	-	-				
HCM 95th %tile Q(veh	า)	0.1	-	-	0.1	0.1	0	-	-				
Notes													
~: Volume exceeds ca	apacity	\$: De	lay exc	eeds 30)0s -	⊦: Com	putation	Not De	fined	*: All r	najor volu	ume in platoo	n

HCM 6th Signalized Intersection Summary 4: Washington St & Boyer's Driveway/E 73rd Ave

	٠	-	7	1	-	*	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	2	ţ,		ľ	ţ,		ľ	11	1	ľ	**	
Traffic Volume (veh/h)	0	0	0	20	0	28	0	450	29	33	1530	0
Future Volume (veh/h)	0	0	0	20	0	28	0	450	29	33	1530	0
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	0	0	0	21	0	29	0	474	31	35	1611	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	72	70	0	139	0	59	72	3065	1367	843	4404	0
Arrive On Green	0.00	0.00	0.00	0.04	0.00	0.04	0.00	1.00	1.00	1.00	1.00	0.00
Sat Flow, veh/h	1381	1870	0	1781	0	1585	314	3554	1585	894	5274	0
Grp Volume(v), veh/h	0	0	0	21	0	29	0	474	31	35	1611	0
Grp Sat Flow(s),veh/h/ln	1381	1870	0	1781	0	1585	314	1777	1585	894	1702	0
Q Serve(g_s), s	0.0	0.0	0.0	1.1	0.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.0	0.0	0.0	1.1	0.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0
Prop In Lane	1.00		0.00	1.00		1.00	1.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	72	70	0	139	0	59	72	3065	1367	843	4404	0
V/C Ratio(X)	0.00	0.00	0.00	0.15	0.00	0.49	0.00	0.15	0.02	0.04	0.37	0.00
Avail Cap(c_a), veh/h	365	468	0	517	0	396	72	3065	1367	843	4404	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	0.00	0.00	0.00	1.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	0.0	0.0	0.0	46.9	0.0	47.2	0.0	0.0	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.5	0.0	6.1	0.0	0.1	0.0	0.1	0.2	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	0.0	0.0	0.5	0.0	0.8	0.0	0.0	0.0	0.0	0.1	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	0.0	0.0	0.0	47.4	0.0	53.2	0.0	0.1	0.0	0.1	0.2	0.0
LnGrp LOS	Α	Α	Α	D	Α	D	А	Α	Α	А	Α	<u> </u>
Approach Vol, veh/h		0			50			505			1646	
Approach Delay, s/veh		0.0			50.8			0.1			0.2	
Approach LOS					D			А			А	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		91.2		8.8		91.2		8.8				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		65.0		25.0		65.0		25.0				
Max Q Clear Time (g_c+l1), s		2.0		0.0		2.0		3.8				
Green Ext Time (p_c), s		3.4		0.0		18.5		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			1.4									
HCM 6th LOS			Α									

	•	*	t	۲	4	ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	٦	1	11h		5	111
Traffic Volume (veh/h)	11	28	450	23	28	1525
Future Volume (veh/h)	11	28	450	23	28	1525
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A pbT)	1.00	1.00		1.00	1.00	
Parking Bus. Adi	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac	h No		No			No
Adi Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adi Flow Rate, veh/h	12	29	474	24	29	1605
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh %	0.00	0.00	0.00	0.00	2	0.00
Can yeh/h	61	70	/312	217	851	4422
Cap, ven/n	0 02	0.04	4012	1.00	1.00	4422
	1704	0.04	1.00	1.00	1.00	1.00
Sat Flow, ven/n	1/81	1585	5147	250	900	5274
Grp Volume(v), veh/h	12	29	323	175	29	1605
Grp Sat Flow(s),veh/h/In	1781	1585	1702	1825	900	1702
Q Serve(g_s), s	0.7	1.8	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.7	1.8	0.0	0.0	0.0	0.0
Prop In Lane	1.00	1.00		0.14	1.00	
Lane Grp Cap(c), veh/h	61	70	2948	1581	851	4422
V/C Ratio(X)	0.20	0.42	0.11	0.11	0.03	0.36
Avail Cap(c, a) veh/h	445	412	2948	1581	851	4422
HCM Platoon Ratio	1.00	1 00	2 00	2 00	2 00	2 00
Linstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	16.5	0.0	0.0	0.0	0.0
Iner Delay (d2), s/veh	147.0	40.5	0.0	0.0	0.0	0.0
Incr Delay (d2), s/ven	1.0	3.9	0.1	0.1	0.1	0.2
Initial Q Delay(d3),s/ven	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh	/10.3	0.8	0.0	0.1	0.0	0.1
Unsig. Movement Delay	, s/veh	1				
LnGrp Delay(d),s/veh	48.6	50.5	0.1	0.1	0.1	0.2
LnGrp LOS	D	D	Α	А	Α	А
Approach Vol, veh/h	41		498			1634
Approach Delay, s/veh	49.9		0.1			0.2
Approach LOS	D		А			А
Timer Are' Di		•				^
Timer - Assigned Phs		2				6
Phs Duration (G+Y+Rc)	, S	91.6				91.6
Change Period (Y+Rc),	S	5.0				5.0
Max Green Setting (Gm	ax), s	65.0				65.0
Max Q Clear Time (g_c-	+I1), s	2.0				2.0
Green Ext Time (p_c), s		3.2				18.3
Intersection Summary						
HCM 6th Ctrl Delay			11			
HCM 6th LOS			Δ			
			A			

HCM 6th Signalized Intersection Summary 6: Washington St & E 70th Ave

	٠	→	7	4	•	×	1	t	۲	4	ŧ	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	17	^	1	1	11	1	1	^1		1	^	1	
Traffic Volume (veh/h)	285	335	275	145	350	81	85	130	33	450	595	490	
Future Volume (veh/h)	285	335	275	145	350	81	85	130	33	450	595	490	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	300	353	0	153	368	0	89	137	0	474	626	0	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	380	1465		196	1465		222	276		510	774		
Arrive On Green	0.11	0.41	0.00	0.11	0.41	0.00	0.06	0.08	0.00	0.28	0.29	0.00	
Sat Flow, veh/h	3456	3554	1585	1781	3554	1585	1781	3647	0	1781	3554	1585	
Grp Volume(v), veh/h	300	353	0	153	368	0	89	137	0	474	626	0	
Grp Sat Flow(s), veh/h/lr	า1728	1777	1585	1781	1777	1585	1781	1777	0	1781	1777	1585	
Q Serve(g_s), s	8.5	6.5	0.0	8.4	6.8	0.0	4.5	3.7	0.0	21.0	16.3	0.0	
Cycle Q Clear(g_c), s	8.5	6.5	0.0	8.4	6.8	0.0	4.5	3.7	0.0	21.0	16.3	0.0	
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.00	1.00		1.00	
Lane Grp Cap(c), veh/h	380	1465		196	1465		222	276		510	774		
V/C Ratio(X)	0.79	0.24		0.78	0.25		0.40	0.50		0.93	0.81		
Avail Cap(c_a), veh/h	380	1465		196	1465		240	711		510	1173		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	
Uniform Delay (d), s/vel	n 43.4	19.2	0.0	43.3	19.3	0.0	39.2	44.2	0.0	30.4	33.6	0.0	
Incr Delay (d2), s/veh	10.7	0.4	0.0	18.1	0.4	0.0	1.2	1.4	0.0	23.8	2.6	0.0	
Initial Q Delay(d3),s/veh	n 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh	n/In4.1	2.6	0.0	4.6	2.8	0.0	2.0	1.6	0.0	12.8	6.5	0.0	
Unsig. Movement Delay	/, s/veh	1											
LnGrp Delay(d),s/veh	54.0	19.6	0.0	61.5	19.7	0.0	40.3	45.6	0.0	54.2	36.2	0.0	
LnGrp LOS	D	В		E	B		D	D		D	D		
Approach Vol, veh/h		653			521			226			1100		
Approach Delay, s/veh		35.4			32.0			43.5			43.9		
Approach LOS		D			С			D			D		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)	. 25.0	12.8	15.0	47.2	11.0	26.8	15.0	47.2					
Change Period (Y+Rc).	s 5.0	5.0	5.0	6.0	5.0	5.0	5.0	6.0					
Max Green Setting (Gm	a20.6	20.0	10.0	29.0	7.0	33.0	10.0	29.0					
Max Q Clear Time (g c	+1213.0s	5.7	10.4	8.5	6.5	18.3	10.5	8.8					
Green Ext Time (p_c), s	s 0.0	0.5	0.0	2.0	0.0	3.4	0.0	2.1					
Intersection Summary													
HCM 6th Ctrl Delay			39.2										
HCM 6th LOS			D										

Notes

User approved pedestrian interval to be less than phase max green. Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

HCM 6th Signalized Intersection Summary 1: Washington St & E 78th Ave

	٠	→	7	4	+	*	1	Ť	1	6	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	1	7	•	1	ሻ	^	1	٦	^	1
Traffic Volume (veh/h)	28	4	5	65	2	93	8	1035	102	107	475	34
Future Volume (veh/h)	28	4	5	65	2	93	8	1035	102	107	475	34
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	29	4	5	68	2	98	8	1089	107	113	500	36
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	180	157	133	188	157	133	696	2551	1138	493	2899	1293
Arrive On Green	0.08	0.08	0.08	0.08	0.08	0.08	1.00	1.00	1.00	0.05	0.82	0.82
Sat Flow, veh/h	1295	1870	1585	1406	1870	1585	869	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	29	4	5	68	2	98	8	1089	107	113	500	36
Grp Sat Flow(s).veh/h/ln	1295	1870	1585	1406	1870	1585	869	1777	1585	1781	1777	1585
Q Serve(q s), s	2.1	0.2	0.3	4.7	0.1	6.0	0.0	0.0	0.0	1.5	3.0	0.4
Cycle Q Clear(q c), s	2.2	0.2	0.3	4.9	0.1	6.0	0.0	0.0	0.0	1.5	3.0	0.4
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	180	157	133	188	157	133	696	2551	1138	493	2899	1293
V/C Ratio(X)	0.16	0.03	0.04	0.36	0.01	0.73	0.01	0.43	0.09	0.23	0.17	0.03
Avail Cap(c a), veh/h	394	468	396	421	468	396	696	2551	1138	533	2899	1293
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	43.0	42.0	42.1	44.3	42.0	44.7	0.0	0.0	0.0	2.5	2.0	1.7
Incr Delay (d2), s/veh	0.4	0.1	0.1	1.2	0.0	7.6	0.0	0.5	0.2	0.2	0.1	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.7	0.1	0.1	1.7	0.0	2.6	0.0	0.2	0.1	0.3	0.6	0.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	43.4	42.1	42.2	45.4	42.0	52.3	0.0	0.5	0.2	2.7	2.1	1.8
LnGrp LOS	D	D	D	D	D	D	А	А	А	А	А	А
Approach Vol. veh/h		38			168			1204			649	
Approach Delay, s/veh		43.1			49.4			0.5			2.2	
Approach LOS		D			D			A			А	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	9.8	76.8		13.4		86.6		13.4				
Change Period (Y+Rc), s	5.0	5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s	7.0	53.0		25.0		65.0		25.0				
Max Q Clear Time (g_c+I1), s	3.5	2.0		4.2		5.0		8.0				
Green Ext Time (p_c), s	0.1	10.2		0.1		3.6		0.4				
Intersection Summary												
HCM 6th Ctrl Delay			5.8									
HCM 6th LOS			А									
	٨	¥	1	Ť	ţ	4						
----------------------------	----------------	-------------	-------	------	-----------	------						
Movement	EBL	EBR	NBL	NBT	SBT	SBR						
Lane Configurations	٦	1	7	***	**							
Traffic Volume (veh/h)	30	15	5	1215	595	5						
Future Volume (veh/h)	30	15	5	1215	595	5						
Initial Q (Qb), veh	0	0	0	0	0	0						
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00						
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00						
Work Zone On Approac	h No			No	No							
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870						
Adj Flow Rate, veh/h	31	16	5	1266	620	5						
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96						
Percent Heavy Veh. %	2	2	2	2	2	2						
Cap, veh/h	65	58	763	4409	4512	36						
Arrive On Green	0.04	0.04	1 00	1 00	1 00	1 00						
Sat Flow yeh/h	1781	1585	800	527/	5303	1.00						
	1701	1000	- 000	4000	1090	42						
Grp Volume(v), veh/h	31	16	5	1266	404	221						
Grp Sat Flow(s),veh/h/lr	1781	1585	800	1/02	1/02	1863						
Q Serve(g_s), s	1.7	1.0	0.0	0.0	0.0	0.0						
Cycle Q Clear(g_c), s	1.7	1.0	0.0	0.0	0.0	0.0						
Prop In Lane	1.00	1.00	1.00			0.02						
Lane Grp Cap(c), veh/h	65	58	763	4409	2940	1609						
V/C Ratio(X)	0.48	0.28	0.01	0.29	0.14	0.14						
Avail Cap(c a), veh/h	445	396	763	4409	2940	1609						
HCM Platoon Ratio	1.00	1.00	2.00	2.00	2.00	2.00						
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00						
Uniform Delay (d). s/veh	47.2	46.9	0.0	0.0	0.0	0.0						
Incr Delay (d2) s/veh	54	2.6	0.0	0.2	0.1	0.2						
Initial () Delay(d3) s/veh	0.4	0.0	0.0	0.0	0.1	0.0						
%ile BackOfO(50%) voh	//m0.0	0.0	0.0	0.0	0.0	0.0						
Unsig Movement Delay	niu.y	0.4	0.0	0.1	0.0	0.1						
Unsig. Movement Delay	, s/ven	40 F	0.0	0.0	0.4	0.0						
LIGIP Delay(d), s/veh	52.6	49.5	0.0	0.2	0.1	0.2						
LINGIP LOS	D	D	A	A	A	A						
Approach Vol, veh/h	47			1271	625							
Approach Delay, s/veh	51.5			0.2	0.1							
Approach LOS	D			Α	Α							
Timer - Assigned Phs		2		4		6						
Phs Duration (G+Y+Rc)	, S	91.4		8.6		91.4						
Change Period (Y+Rc)	s	5.0		5.0		5.0						
Max Green Setting (Gm	ax) s	65.0		25.0		65.0						
Max O Clear Time (c. o	un,s ⊾l1) c	2.0		20.0		20						
Groop Ext Time (n a)	····), S	2.0 12.0		0.1		2.0						
Green Ext nine (p_C), s		12.0		0.1		4.2						
Intersection Summary												
HCM 6th Ctrl Delay			1.4									
HCM 6th LOS			А									

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		7	**		٢	朴朴î ;	
Traffic Vol, veh/h	4	1	15	5	1	5	17	1300	5	5	630	3
Future Vol, veh/h	4	1	15	5	1	5	17	1300	5	5	630	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	50	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	1	16	5	1	5	18	1368	5	5	663	3

Major/Minor	Minor2		Ν	Minor1			Major1		Ν	/lajor2				
Conflicting Flow All	1259	2084	333	1683	2083	687	666	0	0	1373	0	0		
Stage 1	675	675	-	1407	1407	-	-	-	-	-	-	-		
Stage 2	584	1409	-	276	676	-	-	-	-	-	-	-		
Critical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34	-	-	5.34	-	-		
Critical Hdwy Stg 1	7.34	5.54	-	7.34	5.54	-	-	-	-	-	-	-		
Critical Hdwy Stg 2	6.74	5.54	-	6.74	5.54	-	-	-	-	-	-	-		
Follow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12	-	-	3.12	-	-		
Pot Cap-1 Maneuver	*564	*124	*782	*270	*124	*626	981	-	-	*787	-	-		
Stage 1	*788	*754	-	*643	*611	-	-	-	-	-	-	-		
Stage 2	*643	*611	-	*802	*753	-	-	-	-	-	-	-		
Platoon blocked, %	1	1	1	1	1	1	1	-	-	1	-	-		
Mov Cap-1 Maneuver	*545	*121	*782	*258	*121	*626	981	-	-	*787	-	-		
Mov Cap-2 Maneuver	*545	*121	-	*258	*121	-	-	-	-	-	-	-		
Stage 1	*774	*749	-	*631	*600	-	-	-	-	-	-	-		
Stage 2	*625	*600	-	*780	*748	-	-	-	-	-	-	-		
Approach	EB			WB			NB			SB				
HCM Control Delay, s	11.5			17.1			0.1			0.1				
HCM LOS	В			С										
Minor Lane/Major Mvi	mt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR					
Capacity (veh/h)		981	-	-	575	309	* 787	-	-					
HCM Lane V/C Ratio		0.018	-	-	0.037	0.037	0.007	-	-					
HCM Control Delay (s	5)	8.7	-	-	11.5	17.1	9.6	-	-					
HCM Lane LOS	,	А	-	-	В	С	А	-	-					
HCM 95th %tile Q(veh	า)	0.1	-	-	0.1	0.1	0	-	-					
Notes														
~: Volume exceeds ca	apacity	\$: De	lay exc	eeds 30)Os	+: Com	putation	Not De	fined	*: All r	najor volu	ume in pl	atoon	

	٠	-	7	1	-	*	1	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	¢Î,		ľ	et.		ľ	**	1	7	***	
Traffic Volume (veh/h)	0	0	0	36	0	120	0	1195	58	16	630	0
Future Volume (veh/h)	0	0	0	36	0	120	0	1195	58	16	630	0
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	0	0	0	38	0	126	0	1258	61	17	663	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	72	193	0	256	0	164	72	2831	1263	404	4068	0
Arrive On Green	0.00	0.00	0.00	0.10	0.00	0.10	0.00	1.00	1.00	1.00	1.00	0.00
Sat Flow, veh/h	1265	1870	0	1781	0	1585	772	3554	1585	416	5274	0
Grp Volume(v), veh/h	0	0	0	38	0	126	0	1258	61	17	663	0
Grp Sat Flow(s),veh/h/ln	1265	1870	0	1781	0	1585	772	1777	1585	416	1702	0
Q Serve(g_s), s	0.0	0.0	0.0	2.0	0.0	7.7	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.0	0.0	0.0	2.0	0.0	7.7	0.0	0.0	0.0	0.0	0.0	0.0
Prop In Lane	1.00		0.00	1.00		1.00	1.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	72	193	0	256	0	164	72	2831	1263	404	4068	0
V/C Ratio(X)	0.00	0.00	0.00	0.15	0.00	0.77	0.00	0.44	0.05	0.04	0.16	0.00
Avail Cap(c_a), veh/h	257	468	0	517	0	396	72	2831	1263	404	4068	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	0.00	0.00	0.00	1.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	0.0	0.0	0.0	41.1	0.0	43.7	0.0	0.0	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.3	0.0	7.4	0.0	0.5	0.1	0.2	0.1	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	0.0	0.0	0.9	0.0	3.4	0.0	0.2	0.0	0.0	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	0.0	0.0	0.0	41.3	0.0	51.1	0.0	0.5	0.1	0.2	0.1	0.0
LnGrp LOS	А	А	А	D	А	D	А	А	А	А	А	Α
Approach Vol, veh/h		0			164			1319			680	
Approach Delay, s/veh		0.0			48.8			0.5			0.1	
Approach LOS					D			А			А	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		84.7		15.3		84.7		15.3				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		65.0		25.0		65.0		25.0				
Max Q Clear Time (g_c+I1), s		2.0		0.0		2.0		9.7				
Green Ext Time (p_c), s		12.8		0.0		5.3		0.7				
Intersection Summary												
HCM 6th Ctrl Delay			4.0									
HCM 6th LOS			Α									

	•	*	t	۲	4	ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	1	**		5	***
Traffic Volume (veh/h)	31	35	1215	17	22	630
Future Volume (veh/h)	31	35	1215	17	22	630
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	n No		No			No
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	33	37	1279	18	23	663
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh. %	2	2	2	2	2	2
Cap, veh/h	76	68	4447	63	436	4377
Arrive On Green	0.04	0.04	1 00	1 00	1 00	1 00
Sat Flow, veh/h	1781	1585	5357	73	425	5274
Gra Volumo(v), voh/h	22	37	830	158	22	663
Grp Volume(v), ven/m	1701	1505	1702	400	23 425	1702
Grp Sat Flow(s), ven/n/in	1/01	1000	1702	1007	420	1702
Q Serve(g_s), s	1.8	2.3	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	1.8	2.3	0.0	0.0	0.0	0.0
Prop In Lane	1.00	1.00		0.04	1.00	
Lane Grp Cap(c), veh/h	76	68	2918	1592	436	4377
V/C Ratio(X)	0.43	0.54	0.29	0.29	0.05	0.15
Avail Cap(c_a), veh/h	445	396	2918	1592	436	4377
HCM Platoon Ratio	1.00	1.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	46.7	46.9	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	3.8	6.6	0.2	0.5	0.2	0.1
Initial Q Delay(d3).s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%) veh	/lr0.9	1.0	0.1	0.2	0.0	0.0
Unsig, Movement Delay	s/veh	1	9.1	9.2	0.0	0.0
InGrn Delay(d) s/veh	50 5	53.5	02	05	0.2	0.1
	оо.о П	оо.о П	Δ	Δ	Δ	Δ
Approach Val. voh/h	70	U	1207	~	<u></u>	202
Approach Vol, ven/n	70 50 1		1297			000
Approach Delay, s/ven	5Z. I		0.3			0.1
Approach LOS	D		A			A
Timer - Assigned Phs		2				6
Phs Duration (G+Y+Rc).	S	90.7				90.7
Change Period (Y+Rc)	S	5.0				5.0
Max Green Setting (Gm	ax) s	65.0				65.0
Max O Clear Time (o. c+	-11) c	2.0				2.0
Green Ext Time (n. c) s	11), 3	2.0 11 २				2.0 5.1
$(p_c), s$		11.3				5.4
Intersection Summary						
HCM 6th Ctrl Delay			2.0			
HCM 6th LOS			А			

	٠	-	7	4	•-	*	1	t	۲	4	ŧ	~	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	17	**	1	5	44	1	7	A1.		7	**	1	
Traffic Volume (veh/h)	485	500	77	56	370	225	375	545	140	180	280	295	
Future Volume (veh/h)	485	500	77	56	370	225	375	545	140	180	280	295	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	511	526	0	59	389	0	395	574	0	189	295	0	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	553	1580		76	1199		427	720		291	542		
Arrive On Green	0.16	0.44	0.00	0.04	0.34	0.00	0.15	0.20	0.00	0.17	0.25	0.00	
Sat Flow, veh/h	3456	3554	1585	1781	3554	1585	1781	3647	0	1781	3554	1585	
Grp Volume(v), veh/h	511	526	0	59	389	0	395	574	0	189	295	0	
Grp Sat Flow(s),veh/h/lr	า1728	1777	1585	1781	1777	1585	1781	1777	0	1781	1777	1585	
Q Serve(g_s), s	14.6	9.6	0.0	3.3	8.1	0.0	15.0	15.4	0.0	8.9	7.2	0.0	
Cycle Q Clear(g_c), s	14.6	9.6	0.0	3.3	8.1	0.0	15.0	15.4	0.0	8.9	7.2	0.0	
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.00	1.00		1.00	
Lane Grp Cap(c), veh/h	553	1580		76	1199		427	720		291	542		
V/C Ratio(X)	0.92	0.33		0.77	0.32		0.93	0.80		0.65	0.54		
Avail Cap(c_a), veh/h	553	1580		178	1199		427	1066		291	888		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.67	1.67	1.67	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	
Uniform Delay (d), s/vel	n 41.4	18.1	0.0	47.4	24.7	0.0	32.4	37.9	0.0	29.6	34.2	0.0	
Incr Delay (d2), s/veh	21.5	0.6	0.0	15.2	0.7	0.0	26.0	2.6	0.0	5.0	0.9	0.0	
Initial Q Delay(d3),s/veh	n 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh	n/In7.6	3.9	0.0	1.7	3.4	0.0	5.2	6.7	0.0	3.8	2.9	0.0	
Unsig. Movement Delay	, s/veh									• • -			
LnGrp Delay(d),s/veh	62.9	18.7	0.0	62.6	25.4	0.0	58.4	40.6	0.0	34.5	35.1	0.0	
LnGrp LOS	E	В		E	С		E	D		С	D		
Approach Vol, veh/h		1037			448			969			484		
Approach Delay, s/veh		40.5			30.3			47.8			34.9		
Approach LOS		D			С			D			С		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)	. \$5.0	25.3	9.3	50.5	20.0	20.3	20.0	39.7					
Change Period (Y+Rc)	s 5.0	5.0	5.0	6.0	5.0	5.0	5.0	6.0					
Max Green Setting (Gm	a10.6	30.0	10.0	29.0	15.0	25.0	15.0	24.0					
Max Q Clear Time (g c	+1110.9s	17.4	5.3	11.6	17.0	9.2	16.6	10.1					
Green Ext Time (p_c), s	s 0.0	2.9	0.0	3.0	0.0	1.5	0.0	1.9					
Intersection Summary													
HCM 6th Ctrl Delay			40.4										
nom our our boluy			404										

Notes

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

	٠	+	*	•	+	•	1	t	1	1	ŧ	∢
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	1	1	ľ	1	7	٦	**	1	7	**	1
Traffic Volume (veh/h)	34	18	17	167	10	109	8	313	55	93	1272	20
Future Volume (veh/h)	34	18	17	167	10	109	8	313	55	93	1272	20
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	36	19	18	176	11	115	8	329	58	98	1339	21
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	268	300	254	280	300	254	305	2285	1019	796	2629	1173
Arrive On Green	0.16	0.16	0.16	0.16	0.16	0.16	1.00	1.00	1.00	0.05	0.74	0.74
Sat Flow, veh/h	1265	1870	1585	1371	1870	1585	400	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	36	19	18	176	11	115	8	329	58	98	1339	21
Grp Sat Flow(s),veh/h/ln	1265	1870	1585	1371	1870	1585	400	1777	1585	1781	1777	1585
Q Serve(g_s), s	2.5	0.9	1.0	12.5	0.5	6.6	0.2	0.0	0.0	1.7	15.7	0.3
Cycle Q Clear(g_c), s	3.0	0.9	1.0	13.4	0.5	6.6	6.3	0.0	0.0	1.7	15.7	0.3
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	268	300	254	280	300	254	305	2285	1019	796	2629	1173
V/C Ratio(X)	0.13	0.06	0.07	0.63	0.04	0.45	0.03	0.14	0.06	0.12	0.51	0.02
Avail Cap(c_a), veh/h	382	468	396	403	468	396	305	2285	1019	838	2629	1173
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	36.7	35.6	35.7	41.3	35.5	38.0	0.3	0.0	0.0	4.5	5.4	3.4
Incr Delay (d2), s/veh	0.2	0.1	0.1	2.3	0.0	1.3	0.2	0.1	0.1	0.1	0.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/in	0.8	0.4	0.4	4.3	0.2	0.1	0.0	0.0	0.0	0.5	4.5	0.1
Unsig. Movement Delay, s/veh	07.0	05.7	25.0	40.0		00.0	0.5	0.4	0.4	4.5	0.4	2 5
LnGrp Delay(d),s/ven	37.0	35.7	35.8	43.0	35.5	39.3	0.5	0.1	0.1	4.5	6.1	3.5
	D		D	D		D	A	A	A	A	A	<u> </u>
Approach Vol, ven/h		/3			302			395			1458	
Approach Delay, s/ven		30.3			41.7			0.1			6.0	
Approach LOS		D			D			A			A	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	9.7	69.3		21.0		79.0		21.0				
Change Period (Y+Rc), s	5.0	5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s	7.0	53.0		25.0		65.0		25.0				
Max Q Clear Time (g_c+I1), s	3.7	8.3		5.0		17.7		15.4				
Green Ext Time (p_c), s	0.1	2.5		0.2		13.4		0.7				
Intersection Summary												
HCM 6th Ctrl Delay			10.8									
HCM 6th LOS			В									

	٨	7	1	t	ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	٦	1	ሻ	111	44Þ	
Traffic Volume (veh/h)	15	15	35	403	1552	55
Future Volume (veh/h)	15	15	35	403	1552	55
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adi	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac	ch No			No	No	
Adi Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adi Flow Rate veh/h	16	16	38	443	1705	60
Peak Hour Factor	0.01	0.01	0.01	0.01	0.01	0.01
Percent Heavy Veb %	0.01	0.01	0.01	0.01	0.01	0.01
Con woh/h	۲ ۲	47	200	Z	2	155
Cap, Vell/II	0.02	47	1.00	4440	4409	100
Arrive On Green	0.03	0.03	1.00	1.00	1.00	1.00
Sat Flow, veh/h	1781	1585	2/1	5274	5233	1/8
Grp Volume(v), veh/h	16	16	38	443	1146	619
Grp Sat Flow(s),veh/h/l	n1781	1585	271	1702	1702	1838
Q Serve(g_s), s	0.9	1.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.9	1.0	0.0	0.0	0.0	0.0
Prop In Lane	1.00	1.00	1.00			0.10
Lane Grp Cap(c), veh/h	52	47	308	4445	2963	1600
V/C Ratio(X)	0.31	0.34	0.12	0.10	0.39	0.39
Avail Can(c. a) voh/h	115	306	308	1115	2063	1600
HCM Platoon Patio	1 00	1 00	2 00	2 00	2303	2.00
I Iow Flatout Ratio	1.00	1.00	2.00	2.00	2.00	2.00
Upstream Filter(I)		1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/ve	n4/.5	4/.6	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	3.2	4.3	0.8	0.0	0.4	0.7
Initial Q Delay(d3),s/vel	n 0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vel	h/In0.4	0.4	0.1	0.0	0.2	0.3
Unsig. Movement Delay	y, s/veh					
LnGrp Delay(d),s/veh	50.7	51.9	0.8	0.0	0.4	0.7
LnGrp LOS	D	D	А	A	А	А
Annroach Vol. veh/h	32	_		481	1765	
Approach Delay s/uch	51 2			- 0 1	0.5	
Approach LOC	01.0			0.1	0.0	
Approach LOS	U			A	A	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc). s	92.1		7.9		92.1
Change Period (Y+Rc)	s	5.0		5.0		5.0
Max Green Setting (Gr	nax) e	65.0		25.0		65.0
Max O Clear Time /a. a	un), 5	2.0		20.0		2.0
Croop Ext Time (g_C	.+11), S	Z.U		0.1		2.0
Green Ext Time (p_C), s	5	4.5		0.1		19.7
Intersection Summary						
HCM 6th Ctrl Delay			1.1			
HCM 6th LOS			Δ			
			А			

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		1	4 4 %		1	乔乔 萨	
Traffic Vol, veh/h	3	1	10	5	1	5	29	463	5	5	1562	3
Future Vol, veh/h	3	1	10	5	1	5	29	463	5	5	1562	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	50	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
M∨mt Flow	3	1	11	5	1	5	31	487	5	5	1644	3

Major/Minor	Minor2		N	/linor1			Major1		Ν	lajor2				
Conflicting Flow All	1913	2210	824	1220	2209	246	1647	0	0	492	0	0		
Stage 1	1656	1656	-	552	552	-	-	-	-	-	-	-		
Stage 2	257	554	-	668	1657	-	-	-	-	-	-	-		
Critical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34	-	-	5.34	-	-		
Critical Hdwy Stg 1	7.34	5.54	-	7.34	5.54	-	-	-	-	-	-	-		
Critical Hdwy Stg 2	6.74	5.54	-	6.74	5.54	-	-	-	-	-	-	-		
Follow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12	-	-	3.12	-	-		
Pot Cap-1 Maneuver	*504	*361	*575	*504	*362	*834	*722	-	-	954	-	-		
Stage 1	*590	*561	-	*675	*697	-	-	-	-	-	-	-		
Stage 2	*855	*695	-	*590	*561	-	-	-	-	-	-	-		
Platoon blocked, %	1	1	1	1	1	1	1	-	-	1	-	-		
Mov Cap-1 Maneuver	*481	*344	*575	*476	*345	*834	*722	-	-	954	-	-		
Mov Cap-2 Maneuver	*481	*344	-	*476	*345	-	-	-	-	-	-	-		
Stage 1	*564	*558	-	*646	*667	-	-	-	-	-	-	-		
Stage 2	*812	*665	-	*575	*558	-	-	-	-	-	-	-		
Approach	EB			WB			NB			SB				
HCM Control Delay, s	12			11.5			0.6			0				
HCM LOS	В			В										
Minor Lane/Major Mvr	nt	NBL	NBT	NBR I	EBLn1V	/BLn1	SBL	SBT	SBR					
Capacity (veh/h)		* 722	-	-	528	567	954	-	-					
HCM Lane V/C Ratio		0.042	-	-	0.028	0.02	0.006	-	-					
HCM Control Delay (s	;)	10.2	-	-	12	11.5	8.8	-	-					
HCM Lane LOS	,	В	-	-	В	В	А	-	-					
HCM 95th %tile Q(veh	ו)	0.1	-	-	0.1	0.1	0	-	-					
Notes														
~: Volume exceeds ca	apacity	\$: De	lay exc	eeds 30)0s -	⊦: Com	putation	Not De	fined	*: All r	najor volu	ume in p	latoon	

	٠	-	\mathbf{r}	•	-	*	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	Þ		7	Þ		۲	^	1	1	**	
Traffic Volume (veh/h)	41	0	25	20	0	28	45	422	29	33	1475	62
Future Volume (veh/h)	41	0	25	20	0	28	45	422	29	33	1475	62
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	43	0	26	21	0	29	47	444	31	35	1553	65
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	141	0	106	143	0	106	332	2960	1320	837	4186	175
Arrive On Green	0.07	0.00	0.07	0.07	0.00	0.07	1.00	1.00	1.00	1.00	1.00	1.00
Sat Flow, veh/h	1381	0	1585	1385	0	1585	312	3554	1585	919	5026	210
Grp Volume(v), veh/h	43	0	26	21	0	29	47	444	31	35	1052	566
Grp Sat Flow(s),veh/h/ln	1381	0	1585	1385	0	1585	312	1777	1585	919	1702	1832
Q Serve(g_s), s	3.1	0.0	1.6	1.5	0.0	1.7	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	4.8	0.0	1.6	3.0	0.0	1.7	0.0	0.0	0.0	0.0	0.0	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.11
Lane Grp Cap(c), veh/h	141	0	106	143	0	106	332	2960	1320	837	2835	1526
V/C Ratio(X)	0.31	0.00	0.24	0.15	0.00	0.27	0.14	0.15	0.02	0.04	0.37	0.37
Avail Cap(c_a), veh/h	393	0	396	397	0	396	332	2960	1320	837	2835	1526
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	46.6	0.0	44.2	45.7	0.0	44.3	0.0	0.0	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	1.2	0.0	1.2	0.5	0.0	1.4	0.9	0.1	0.0	0.1	0.4	0.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.1	0.0	0.6	0.5	0.0	0.7	0.1	0.0	0.0	0.0	0.1	0.3
Unsig. Movement Delay, s/veh	47.0		4= 4	10.1		45 5		0.4		0 4	<u> </u>	0 7
LnGrp Delay(d),s/veh	47.8	0.0	45.4	46.1	0.0	45.7	0.9	0.1	0.0	0.1	0.4	0.7
LnGrp LOS	D	<u>A</u>	D	D	<u>A</u>	D	A	A	A	A	<u>A</u>	<u> </u>
Approach Vol, veh/h		69			50			522			1653	
Approach Delay, s/veh		46.9			45.9			0.2			0.5	
Approach LOS		D			D			A			A	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		88.3		11.7		88.3		11.7				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		65.0		25.0		65.0		25.0				
Max Q Clear Time (g_c+l1), s		2.0		6.8		2.0		5.0				
Green Ext Time (p_c), s		4.5		0.2		17.2		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			2.8									
HCM 6th LOS			Α									

*	*	Ť	1	1	ŧ
WBL	WBR	NBT	NBR	SBL	SBT
5	1	441		5	444
11	28	467	23	28	1555
11	28	467	23	28	1555
0	0	0	0	0	0
1.00	1.00		1.00	1.00	
1.00	1.00	1.00	1.00	1.00	1.00
h No		No			No
1870	1870	1870	1870	1870	1870
12	29	492	24	29	1637
0.95	0.95	0.95	0.95	0.95	0.95
2	2	2	2	2	2
61	70	4321	209	838	4422
0.03	0.04	1.00	1.00	1.00	1.00
1781	1585	5157	242	885	5274
12	20	335	181	200	1637
1781	1585	1702	1827	885	1702
07	1 2	0.0	0.0	000	0.0
0.7	1.0	0.0	0.0	0.0	0.0
1.00	1.0	0.0	0.0	1.00	0.0
61	70	2010	1500	1.00	1100
0.20	0.42	2940	0.11	0.02	44ZZ
0.20	0.42	0.11	1590	0.03	0.37
440	412	2940	2 00	2 00	44ZZ
1.00	1.00	2.00	2.00	2.00	2.00
1.00	1.00	1.00	1.00	1.00	1.00
147.0	46.5	0.0	0.0	0.0	0.0
1.6	3.9	0.1	0.1	0.1	0.2
n 0.0	0.0	0.0	0.0	0.0	0.0
n/lr0.3	0.8	0.0	0.1	0.0	0.1
v, s/veh	۱				
48.6	50.5	0.1	0.1	0.1	0.2
D	D	A	Α	Α	Α
41		516			1666
49.9		0.1			0.2
D		А			А
	2				6
s	91.6				91.6
, 3	50				50
av) c	5.0 65.0				65.0
(ax), 5	00.0				00.0
+11), S	2.0				2.0
	3.4				19.0
		1.1			
		A			
	WBL 111 11 100 1.00 1.00 1.00 1.00 12 0.95 2 61 0.03 1781 0.7 1.00 61 0.20 445 1.00 1.00 61 0.20 445 1.00 1.00 1.00 445 1.00 1.00 61 0.20 445 1.00 1.00 1.00 61 0.20 445 1.00 1.00 1.00 61 0.20 445 1.00 1.00 1.00 61 0.20 445 1.00 1.00 1.00 61 0.20 445 1.00 1.00 1.00 1.00 61 0.20 445 1.00 1.00 1.00 1.00 0.1,00 1.00 0.1,00 1.00 0.1,00 1.	WBL WBR 11 28 11 28 11 28 11 28 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 12 29 0.95 0.95 2 2 61 70 0.03 0.04 1781 1585 0.7 1.8 1.00 1.00 61 70 0.20 0.42 445 412 1.00 1.00 1.00 1.00 1.00 0.0 1.47.0 46.5 1.6 3.9 0.0 0.0 1.47.0 46.5 1.6 3.9 0.0 0.0 1.47 49.9	WBL WBR NBT MBL WBR NBT 11 28 467 11 28 467 11 28 467 11 28 467 11 28 467 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 12 29 492 0.95 0.95 0.95 2 2 2 61 70 4321 0.03 0.04 1.00 1781 1585 1702 0.7 1.8 0.0 1.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 2.00 1.00 1.00 0.0 1.00 1.00 0.0 1.00 0.0 0.0 1.00 0.0 0.0 </td <td>WBL WBR NBT NBR WBL WBR NBT NBR 11 28 467 23 11 28 467 23 11 28 467 23 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.02 2.9 492 24 0.95 0.95 0.95 2.95 2 2 2 2 117 1870 4321 209 0.03 0.04 1.00 1.00 1781 1585 5157 242 12 29 335 181 1781 <th1585< th=""> 1702</th1585<></td> <td>WBL WBR NBT NBR SBL 1 28 467 23 28 11 28 467 23 28 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.2 29 492 24 29 0.95 0.95 0.95 0.95 2 2 2 61 70 4321 209 838 0.03 0.04 1.00 1.00 1781 1585 5157 242 885 0.29 0.1 1.01 1.01 0.1 0.1 0.1 <td< td=""></td<></td>	WBL WBR NBT NBR WBL WBR NBT NBR 11 28 467 23 11 28 467 23 11 28 467 23 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.02 2.9 492 24 0.95 0.95 0.95 2.95 2 2 2 2 117 1870 4321 209 0.03 0.04 1.00 1.00 1781 1585 5157 242 12 29 335 181 1781 <th1585< th=""> 1702</th1585<>	WBL WBR NBT NBR SBL 1 28 467 23 28 11 28 467 23 28 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.2 29 492 24 29 0.95 0.95 0.95 0.95 2 2 2 61 70 4321 209 838 0.03 0.04 1.00 1.00 1781 1585 5157 242 885 0.29 0.1 1.01 1.01 0.1 0.1 0.1 <td< td=""></td<>

ナーッイナベイ イトシレイ

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	17	11	1	1	11	1	5	1		1	11	1	
Traffic Volume (veh/h)	290	335	275	145	350	83	85	140	33	454	612	499	
Future Volume (veh/h)	290	335	275	145	350	83	85	140	33	454	612	499	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	305	353	0	153	368	0	89	147	0	478	644	0	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	380	1448		196	1448		222	294		512	792		
Arrive On Green	0.11	0.41	0.00	0.11	0.41	0.00	0.06	0.08	0.00	0.28	0.30	0.00	
Sat Flow, veh/h	3456	3554	1585	1781	3554	1585	1781	3647	0	1781	3554	1585	
Grp Volume(v), veh/h	305	353	0	153	368	0	89	147	0	478	644	0	
Grp Sat Flow(s),veh/h/li	n1728	1777	1585	1781	1777	1585	1781	1777	0	1781	1777	1585	
Q Serve(g_s), s	8.6	6.5	0.0	8.4	6.8	0.0	4.5	4.0	0.0	21.0	16.8	0.0	
Cycle Q Clear(g_c), s	8.6	6.5	0.0	8.4	6.8	0.0	4.5	4.0	0.0	21.0	16.8	0.0	
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.00	1.00		1.00	
Lane Grp Cap(c), veh/h	380	1448		196	1448		222	294		512	792		
V/C Ratio(X)	0.80	0.24		0.78	0.25		0.40	0.50		0.93	0.81		
Avail Cap(c_a), veh/h	380	1448		196	1448		240	711		512	1173		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	
Uniform Delay (d), s/vel	h 43.4	19.5	0.0	43.3	19.6	0.0	38.8	43.9	0.0	30.1	33.2	0.0	
Incr Delay (d2), s/veh	11.7	0.4	0.0	18.1	0.4	0.0	1.2	1.3	0.0	24.4	2.8	0.0	
Initial Q Delay(d3),s/veh	n 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh	n/In4.2	2.7	0.0	4.6	2.8	0.0	2.0	1.8	0.0	12.9	6.7	0.0	
Unsig. Movement Delay	/, s/veh	1											
LnGrp Delay(d),s/veh	55.2	19.9	0.0	61.5	20.0	0.0	39.9	45.2	0.0	54.5	36.0	0.0	
LnGrp LOS	Е	В		E	С		D	D		D	D		
Approach Vol, veh/h		658			521			236			1122		
Approach Delay, s/veh		36.2			32.2			43.2			43.9		
Approach LOS		D			С			D			D		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)), 2 5.0	13.3	15.0	46.7	11.0	27.3	15.0	46.7					
Change Period (Y+Rc),	s 5.0	5.0	5.0	6.0	5.0	5.0	5.0	6.0					
Max Green Setting (Gm	na 20 ,.6	20.0	10.0	29.0	7.0	33.0	10.0	29.0					
Max Q Clear Time (g_c	+1213,0s	6.0	10.4	8.5	6.5	18.8	10.6	8.8					
Green Ext Time (p_c), s	s 0.0	0.6	0.0	2.0	0.0	3.5	0.0	2.1					
Intersection Summary													
HCM 6th Ctrl Delay			39.5										
HCM 6th LOS			D										

Notes

User approved pedestrian interval to be less than phase max green. Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection

Int Delay, s/veh	0.3								
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations		1		***	***				
Traffic Vol, veh/h	0	60	0	497	1520	0			
Future Vol, veh/h	0	60	0	497	1520	0			
Conflicting Peds, #/hr	0	0	0	0	0	0			
Sign Control	Stop	Stop	Free	Free	Free	Free			
RT Channelized	-	None	-	None	-	None			
Storage Length	-	0	-	-	-	-			
Veh in Median Storage	, # 0	-	-	0	0	-			
Grade, %	0	-	-	0	0	-			
Peak Hour Factor	95	95	95	95	95	95			
Heavy Vehicles, %	2	2	2	2	2	2			
Mvmt Flow	0	63	0	523	1600	0			

Major/Minor	Minor2	Ν	/lajor1	Мајс	or2			
Conflicting Flow All	-	800	-	0	-	0		
Stage 1	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-		
Critical Hdwy	-	7.14	-	-	-	-		
Critical Hdwy Stg 1	-	-	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-	-	-		
Follow-up Hdwy	-	3.92	-	-	-	-		
Pot Cap-1 Maneuver	0	*588	0	-	-	0		
Stage 1	0	-	0	-	-	0		
Stage 2	0	-	0	-	-	0		
Platoon blocked, %		1		-	-			
Mov Cap-1 Maneuver	• -	*588	-	-	-	-		
Mov Cap-2 Maneuver	· -	-	-	-	-	-		
Stage 1	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-		
Approach	EB		NB	(SB			
HCM Control Delay, s	11.9		0		0			
HCM LOS	В							
Minor Lane/Major Mv	mt	NBT E	BLn1	SBT				
Capacity (veh/h)		-	588	-				
HCM Lane V/C Ratio		-	0.107	-				
HCM Control Delay (s	5)	-	11.9	-				
HCM Lane LOS	/	-	В	-				
HCM 95th %tile Q(vel	ר)	-	0.4	-				
Notes								
~: Volume exceeds ca	apacity	\$: De	lay exce	eeds 300s	+:	Comput	ation Not Defined	*: All major volume in platoon

	۶	-	$\mathbf{\hat{z}}$	•	-	•	1	Ť	1	1	ŧ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٢	^	1	٦	1	1	٦	**	1	٦	**	1
Traffic Volume (veh/h)	28	4	5	65	2	93	8	1042	102	107	486	34
Future Volume (veh/h)	28	4	5	65	2	93	8	1042	102	107	486	34
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	29	4	5	68	2	98	8	1097	107	113	512	36
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	180	157	133	188	157	133	689	2551	1138	491	2899	1293
Arrive On Green	0.08	0.08	0.08	0.08	0.08	0.08	1.00	1.00	1.00	0.05	0.82	0.82
Sat Flow, veh/h	1295	1870	1585	1406	1870	1585	859	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	29	4	5	68	2	98	8	1097	107	113	512	36
Grp Sat Flow(s),veh/h/ln	1295	1870	1585	1406	1870	1585	859	1777	1585	1781	1777	1585
Q Serve(g_s), s	2.1	0.2	0.3	4.7	0.1	6.0	0.0	0.0	0.0	1.5	3.1	0.4
Cycle Q Clear(g_c), s	2.2	0.2	0.3	4.9	0.1	6.0	0.0	0.0	0.0	1.5	3.1	0.4
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	180	157	133	188	157	133	689	2551	1138	491	2899	1293
V/C Ratio(X)	0.16	0.03	0.04	0.36	0.01	0.73	0.01	0.43	0.09	0.23	0.18	0.03
Avail Cap(c_a), veh/h	394	468	396	421	468	396	689	2551	1138	530	2899	1293
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	43.0	42.0	42.1	44.3	42.0	44.7	0.0	0.0	0.0	2.5	2.0	1.7
Incr Delay (d2), s/veh	0.4	0.1	0.1	1.2	0.0	7.6	0.0	0.5	0.2	0.2	0.1	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.7	0.1	0.1	1.7	0.0	2.6	0.0	0.2	0.1	0.3	0.6	0.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	43.4	42.1	42.2	45.4	42.0	52.3	0.0	0.5	0.2	2.7	2.1	1.8
LnGrp LOS	D	D	D	D	D	D	A	A	A	A	A	<u> </u>
Approach Vol, veh/h		38			168			1212			661	
Approach Delay, s/veh		43.1			49.4			0.5			2.2	
Approach LOS		D			D			А			А	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	9.8	76.8		13.4		86.6		13.4				
Change Period (Y+Rc), s	5.0	5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s	7.0	53.0		25.0		65.0		25.0				
Max Q Clear Time (g c+l1), s	3.5	2.0		4.2		5.1		8.0				
Green Ext Time (p_c), s	0.1	10.4		0.1		3.7		0.4				
Intersection Summary												
HCM 6th Ctrl Delav			5.8									
HCM 6th LOS			А									

	٠	7	1	t	ţ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	1	1	5	***	**	
Traffic Volume (veh/h)	30	15	5	1222	606	5
Future Volume (veh/h)	30	15	5	1222	606	5
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac	h No			No	No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adi Flow Rate, veh/h	31	16	5	1273	631	5
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh %	2.00	2.00	2.00	2.00	2.00	2.00
Can veh/h	65	58	756	4400	4513	36
Arrive On Groop	0.04	0.04	1 00	1 00	1 00	1 00
	1704	1595	1.00	1.00	1.00 5204	1.00
Sat Flow, ven/n	1/01	1000	192	5274	5394	41
Grp Volume(v), veh/h	31	16	5	1273	411	225
Grp Sat Flow(s),veh/h/lr	1781	1585	792	1702	1702	1863
Q Serve(g_s), s	1.7	1.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	1.7	1.0	0.0	0.0	0.0	0.0
Prop In Lane	1.00	1.00	1.00			0.02
Lane Grp Cap(c), veh/h	65	58	756	4409	2940	1609
V/C Ratio(X)	0.48	0.28	0.01	0.29	0.14	0.14
Avail Cap(c a), veh/h	445	396	756	4409	2940	1609
HCM Platoon Ratio	1.00	1.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d) s/vet	1472	46.9	0.0	0.0	0.0	0.0
Incr Delay (d2) s/veh	5.4	2.6	0.0	0.2	0.1	0.2
Initial \cap Delay(d3) elveb	0.4	0.0	0.0	0.0	0.0	0.2
		0.0	0.0	0.0	0.0	0.0
June DackOlQ(50%),Ven	1110.9 1. okrob	0.4	0.0	0.1	0.0	0.1
Unsig. Movement Delay	, siven	10 F	0.0	0.0	0.4	0.0
LINGIP Delay(d), s/veh	52.6	49.5	0.0	0.2	0.1	0.2
LINGIP LOS	D	D	А	A	A	A
Approach Vol, veh/h	47			1278	636	
Approach Delay, s/veh	51.5			0.2	0.1	
Approach LOS	D			A	A	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc)	, S	91.4		8.6		91.4
Change Period (Y+Rc)	S	5.0		5.0		5.0
Max Green Setting (Gm	ax) s	65.0		25.0		65.0
Max O Clear Time (o. c-	+11) ¢	2.0		37		2.0
Green Ext Time (n. c) s	, 3	12.0		0.1		43
Laterna etica O		12.1		0.1		4.0
Intersection Summary						
HCM 6th Ctrl Delay			1.4			
HCM 6th LOS			Α			

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4		5	4 4 %		5	4 4 %	
Traffic Vol, veh/h	4	1	15	5	1	5	17	1307	5	5	641	3
Future Vol, veh/h	4	1	15	5	1	5	17	1307	5	5	641	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	50	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
M∨mt Flow	4	1	16	5	1	5	18	1376	5	5	675	3

Major/Minor	Minor2		Ν	Minor1			Major1		Ν	/lajor2				
Conflicting Flow All	1274	2104	339	1696	2103	691	678	0	0	1381	0	0		
Stage 1	687	687	-	1415	1415	-	-	-	-	-	-	-		
Stage 2	587	1417	-	281	688	-	-	-	-	-	-	-		
Critical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34	-	-	5.34	-	-		
Critical Hdwy Stg 1	7.34	5.54	-	7.34	5.54	-	-	-	-	-	-	-		
Critical Hdwy Stg 2	6.74	5.54	-	6.74	5.54	-	-	-	-	-	-	-		
Follow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12	-	-	3.12	-	-		
Pot Cap-1 Maneuver	*550	*119	*782	*264	*119	*626	967	-	-	*787	-	-		
Stage 1	*771	*743	-	*643	*611	-	-	-	-	-	-	-		
Stage 2	*643	*611	-	*802	*743	-	-	-	-	-	-	-		
Platoon blocked, %	1	1	1	1	1	1	1	-	-	1	-	-		
Mov Cap-1 Maneuver	*531	*116	*782	*252	*116	*626	967	-	-	*787	-	-		
Mov Cap-2 Maneuver	*531	*116	-	*252	*116	-	-	-	-	-	-	-		
Stage 1	*756	*739	-	*630	*600	-	-	-	-	-	-	-		
Stage 2	*624	*600	-	*780	*738	-	-	-	-	-	-	-		
Approach	EB			WB			NB			SB				
HCM Control Delay, s	11.6			17.4			0.1			0.1				
HCM LOS	В			С										
Minor Lane/Major Mvr	nt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR					
Capacity (veh/h)		967	-	-	566	302	* 787	-	-					
HCM Lane V/C Ratio		0.019	-	-	0.037	0.038	0.007	-	-					
HCM Control Delay (s	5)	8.8	-	-	11.6	17.4	9.6	-	-					
HCM Lane LOS	,	А	-	-	В	С	А	-	-					
HCM 95th %tile Q(veh	ר)	0.1	-	-	0.1	0.1	0	-	-					
Notes														
~: Volume exceeds ca	apacity	\$: De	lay exc	eeds 30)0s	+: Com	putation	Not De	fined	*: All ı	major volu	ime in p	latoon	

	٠	-	7	•	-	*	1	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	Þ		7	Þ		۲	11	1	۲	**	
Traffic Volume (veh/h)	17	0	11	36	0	120	34	1185	58	16	610	31
Future Volume (veh/h)	17	0	11	36	0	120	34	1185	58	16	610	31
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	18	0	12	38	0	126	36	1247	61	17	642	33
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	115	0	175	218	0	175	675	2805	1251	404	3926	201
Arrive On Green	0.11	0.00	0.11	0.11	0.00	0.11	1.00	1.00	1.00	1.00	1.00	1.00
Sat Flow, veh/h	1265	0	1585	1402	0	1585	764	3554	1585	421	4974	254
Grp Volume(v), veh/h	18	0	12	38	0	126	36	1247	61	17	438	237
Grp Sat Flow(s),veh/h/ln	1265	0	1585	1402	0	1585	764	1777	1585	421	1702	1825
Q Serve(g_s), s	1.4	0.0	0.7	2.5	0.0	7.7	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	9.1	0.0	0.7	3.2	0.0	7.7	0.0	0.0	0.0	0.0	0.0	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.14
Lane Grp Cap(c), veh/h	115	0	175	218	0	175	675	2805	1251	404	2687	1440
V/C Ratio(X)	0.16	0.00	0.07	0.17	0.00	0.72	0.05	0.44	0.05	0.04	0.16	0.16
Avail Cap(c_a), veh/h	291	0	396	413	0	396	675	2805	1251	404	2687	1440
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	47.3	0.0	39.8	41.3	0.0	43.0	0.0	0.0	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	0.6	0.0	0.2	0.4	0.0	5.4	0.2	0.5	0.1	0.2	0.1	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.5	0.0	0.3	0.9	0.0	3.3	0.0	0.2	0.0	0.0	0.0	0.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	48.0	0.0	40.0	41.6	0.0	48.4	0.2	0.5	0.1	0.2	0.1	0.2
LnGrp LOS	D	Α	D	D	А	D	Α	Α	Α	А	А	<u> </u>
Approach Vol, veh/h		30			164			1344			692	
Approach Delay, s/veh		44.8			46.8			0.5			0.2	
Approach LOS		D			D			А			А	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		83.9		16.1		83.9		16.1				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		65.0		25.0		65.0		25.0				
Max Q Clear Time (g_c+l1), s		2.0		11.1		2.0		9.7				
Green Ext Time (p_c), s		13.1		0.0		5.0		0.7				
Intersection Summary												
HCM 6th Ctrl Delay			4.4									
HCM 6th LOS			A									

	•	•	t	1	4	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	1	1	朴朴 存		٦	111	
Traffic Volume (veh/h)	31	35	1239	17	22	648	
Future Volume (veh/h)	31	35	1239	17	22	648	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	h No		No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	33	37	1304	18	23	682	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	76	68	4449	61	428	4377	
Arrive On Green	0.04	0.04	1.00	1.00	1.00	1.00	
Sat Flow, veh/h	1781	1585	5358	72	415	5274	
Grp Volume(v), veh/h	33	37	855	467	23	682	
Grp Sat Flow(s),veh/h/li	n1781	1585	1702	1857	415	1702	
Q Serve(g_s), s	1.8	2.3	0.0	0.0	0.0	0.0	
Cycle Q Clear(g c), s	1.8	2.3	0.0	0.0	0.0	0.0	
Prop In Lane	1.00	1.00		0.04	1.00		
Lane Grp Cap(c), veh/h	76	68	2918	1592	428	4377	
V/C Ratio(X)	0.43	0.54	0.29	0.29	0.05	0.16	
Avail Cap(c a), veh/h	445	396	2918	1592	428	4377	
HCM Platoon Ratio	1.00	1.00	2.00	2.00	2.00	2.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/vel	h 46.7	46.9	0.0	0.0	0.0	0.0	
Incr Delay (d2), s/veh	3.8	6.6	0.3	0.5	0.2	0.1	
Initial Q Delav(d3),s/vel	1 0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%).vel	n/In0.9	1.0	0.1	0.2	0.0	0.0	
Unsig. Movement Delay	, s/veh	1					
LnGrp Delav(d).s/veh	50.5	53.5	0.3	0.5	0.2	0.1	
LnGrp LOS	D	D	A	A	A	Α	
Approach Vol. veh/h	70		1322			705	
Approach Delay, s/veh	52.1		0.3			0.1	
Approach LOS	D		A			A	
Timer - Assigned Phs		2				6	8
Phs Duration (C+V+Do)		90.7				90.7	03
Change Period $(V_{\pm}D_{0})$, 3	50.7				50.7	5.0
Max Green Setting (Gr	o av) c	65.0				65.0	25.0
Max O Clear Time (c. c	107,5	2.0				2.0	A 3
Green Ext Time (p_c)	-11), S S	2.0				2.0 5.6	0.2
Interportion Summer:						0.0	
			0.0				
HCM 6th Ctrl Delay			2.0				
HCM 6th LOS			A				

* + Y & t * * * * * * * * *

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	57	**	1	1	**	1	1	* 1+		1	**	1	
Traffic Volume (veh/h)	492	500	77	56	370	228	375	559	140	183	290	300	
Future Volume (veh/h)	492	500	77	56	370	228	375	559	140	183	290	300	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	518	526	0	59	389	0	395	588	0	193	305	0	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	553	1566		76	1185		428	734		291	557		
Arrive On Green	0.16	0.44	0.00	0.04	0.33	0.00	0.15	0.21	0.00	0.17	0.26	0.00	
Sat Flow, veh/h	3456	3554	1585	1781	3554	1585	1781	3647	0	1781	3554	1585	
Grp Volume(v), veh/h	518	526	0	59	389	0	395	588	0	193	305	0	
Grp Sat Flow(s),veh/h/lr	า1728	1777	1585	1781	1777	1585	1781	1777	0	1781	1777	1585	
Q Serve(g_s), s	14.8	9.7	0.0	3.3	8.2	0.0	15.0	15.7	0.0	9.1	7.4	0.0	
Cycle Q Clear(g_c), s	14.8	9.7	0.0	3.3	8.2	0.0	15.0	15.7	0.0	9.1	7.4	0.0	
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.00	1.00		1.00	
Lane Grp Cap(c), veh/h	553	1566		76	1185		428	734		291	557		
V/C Ratio(X)	0.94	0.34		0.77	0.33		0.92	0.80		0.66	0.55		
Avail Cap(c_a), veh/h	553	1566		178	1185		428	1066		291	888		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.67	1.67	1.67	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	
Uniform Delay (d), s/vel	า 41.5	18.4	0.0	47.4	25.0	0.0	32.0	37.7	0.0	29.4	33.9	0.0	
Incr Delay (d2), s/veh	23.7	0.6	0.0	15.2	0.7	0.0	25.5	2.8	0.0	5.5	0.8	0.0	
Initial Q Delay(d3),s/veh	n 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh	n/In7.9	3.9	0.0	1.7	3.4	0.0	5.1	6.9	0.0	3.9	3.0	0.0	
Unsig. Movement Delay	v, s/veh												
LnGrp Delay(d),s/veh	65.2	18.9	0.0	62.6	25.7	0.0	57.5	40.5	0.0	34.9	34.7	0.0	
LnGrp LOS	E	В		E	С		E	D		С	С		
Approach Vol, veh/h		1044			448			983			498		
Approach Delay, s/veh		41.9			30.5			47.4			34.8		
Approach LOS		D			С			D			С		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)	, \$ 5.0	25.7	9.3	50.1	20.0	20.7	20.0	39.3					
Change Period (Y+Rc),	s 5.0	5.0	5.0	6.0	5.0	5.0	5.0	6.0					
Max Green Setting (Gm	a 1 ¢0,.G	30.0	10.0	29.0	15.0	25.0	15.0	24.0					
Max Q Clear Time (g_c-	+111),15	17.7	5.3	11.7	17.0	9.4	16.8	10.2					
Green Ext Time (p_c), s	0.0	2.9	0.0	3.0	0.0	1.5	0.0	1.9					
Intersection Summary													
HCM 6th Ctrl Delay			40.8										
HCM 6th LOS			D										

Notes

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection

Int Delay, s/veh	0.1						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		1		***	^		
Traffic Vol, veh/h	0	27	0	1279	656	0	
Future Vol, veh/h	0	27	0	1279	656	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	0	-	-	-	-	
Veh in Median Storage,	# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	95	95	95	95	95	95	
Heavy Vehicles, %	2	2	2	2	2	2	
M∨mt Flow	0	28	0	1346	691	0	

Major/Minor	Minor2	Ν	1ajor1	Мајо	r2		
Conflicting Flow All	-	346	-	0	-	0	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	7.14	-	-	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	3.92	-	-	-	-	
Pot Cap-1 Maneuver	0	*801	0	-	-	0	
Stage 1	0	-	0	-	-	0	
Stage 2	0	-	0	-	-	0	
Platoon blocked, %		1		-	-		
Mov Cap-1 Maneuver	-	*801	-	-	-	-	
Mov Cap-2 Maneuver	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Approach	FB		NB	ç	SB		
HCM Control Delay s	9.7		0		0		
HCM LOS	0.1 A		v		U		
				ODT			
	nt	NRIE	BLNI	SBI			
Capacity (veh/h)		-	801	-			
HCM Lane V/C Ratio	,	-	0.035	-			
HCM Control Delay (s)	-	9.7	-			
HCM Lane LOS		-	A	-			
HCM 95th %tile Q(veh	1)	-	0.1	-			
Notes							
~: Volume exceeds ca	pacity	\$: Del	lay exc	eeds 300s	+: C	omputation Not Defined	*: All major volume in platoon

	٠	-	7	4	-	•	1	t	1	6	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	•	1	1	•	1	ሻ	^	1	7	^	1
Traffic Volume (veh/h)	35	20	20	195	10	130	10	355	65	110	1495	20
Future Volume (veh/h)	35	20	20	195	10	130	10	355	65	110	1495	20
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	37	21	21	205	11	137	11	374	68	116	1574	21
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	292	341	289	308	341	289	229	2202	982	745	2550	1137
Arrive On Green	0.18	0.18	0.18	0.18	0.18	0.18	1.00	1.00	1.00	0.05	0.72	0.72
Sat Flow, veh/h	1240	1870	1585	1365	1870	1585	319	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	37	21	21	205	11	137	11	374	68	116	1574	21
Grp Sat Flow(s),veh/h/ln	1240	1870	1585	1365	1870	1585	319	1777	1585	1781	1777	1585
Q Serve(g_s), s	2.5	0.9	1.1	14.6	0.5	7.7	0.7	0.0	0.0	2.2	22.5	0.4
Cycle Q Clear(g_c), s	3.0	0.9	1.1	15.5	0.5	7.7	13.4	0.0	0.0	2.2	22.5	0.4
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	292	341	289	308	341	289	229	2202	982	745	2550	1137
V/C Ratio(X)	0.13	0.06	0.07	0.67	0.03	0.47	0.05	0.17	0.07	0.16	0.62	0.02
Avail Cap(c_a), veh/h	376	468	396	401	468	396	229	2202	982	784	2550	1137
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	34.9	33.8	33.9	40.2	33.6	36.6	1.4	0.0	0.0	5.2	7.2	4.0
Incr Delay (d2), s/veh	0.2	0.1	0.1	2.7	0.0	1.2	0.4	0.2	0.1	0.1	1.1	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.8	0.4	0.4	5.0	0.2	3.0	0.0	0.1	0.0	0.7	6.8	0.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	35.1	33.9	34.0	42.9	33.7	37.8	1.8	0.2	0.1	5.3	8.3	4.1
LnGrp LOS	D	С	С	D	С	D	Α	Α	Α	Α	Α	<u> </u>
Approach Vol, veh/h		79			353			453			1711	
Approach Delay, s/veh		34.5			40.6			0.2			8.0	
Approach LOS		С			D			А			А	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	9.8	67.0		23.2		76.8		23.2				
Change Period (Y+Rc), s	5.0	5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s	7.0	53.0		25.0		65.0		25.0				
Max Q Clear Time (g c+l1), s	4.2	15.4		5.0		24.5		17.5				
Green Ext Time (p_c), s	0.1	2.9		0.2		16.7		0.7				
Intersection Summary												
HCM 6th Ctrl Delay			11.9									
HCM 6th LOS			В									

-	٠	¥	1	t	ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	1	5	111	**	
Traffic Volume (veh/h)	15	15	35	460	1850	55
Future Volume (veh/h)	15	15	35	460	1850	55
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln 1	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	16	16	38	505	2033	60
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh. %	2	2	2	2	2	2
Cap. veh/h	52	47	243	4445	4437	131
Arrive On Green	0.03	0.03	1.00	1.00	1.00	1.00
Sat Flow veh/h 1	1781	1585	196	5274	5266	150
Grn Volume(v) veh/h	16	16	38	505	1356	737
Grp Sat Flow(s) yeb/b/lp1	10	1585	106	1702	1702	18/3
O Serve(a, s) s	00	100	0.0	0.0	0.0	045
Q $O \in V \in (\underline{y}_{3}), S$	0.9	1.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	1.00	1.0	1.00	0.0	0.0	0.0
Prop in Lane	1.00	1.00	1.00	4445	0000	0.08
Lane Grp Cap(c), ven/n	52	47	243	4445	2963	1605
V/C Ratio(X)	0.31	0.34	0.16	0.11	0.46	0.46
Avail Cap(c_a), veh/h	445	396	243	4445	2963	1605
HCM Platoon Ratio	1.00	1.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	47.5	47.6	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	3.2	4.3	1.4	0.1	0.5	0.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/l	In0.4	0.4	0.1	0.0	0.2	0.4
Unsig. Movement Delav.	s/veh					
LnGrp Delay(d).s/veh	50.7	51.9	1.4	0.1	0.5	0.9
LnGrp LOS	D	D	A	A	A	A
Approach Vol. veh/h	32	<u> </u>		543	2093	/ \
Approach Delay sluch	51 3			040	2095 0 7	
Approach LOS	01.0 			U. I	U.7	
Approach LOS	D			A	A	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc),	s	92.1		7.9		92.1
Change Period (Y+Rc). s	;	5.0		5.0		5.0
Max Green Setting (Gma	x), s	65.0		25.0		65.0
Max Q Clear Time (q. c+l	1), s	2.0		3.0		2.0
Green Ext Time (p_c) s	,, 0	5.7		0.1		27.3
Intersection Summary						
			4.0			
HUM 6th Utrl Delay			1.2			
HCM 6th LOS			A			

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		٢	<u> ተ</u> ተኩ		5	**	
Traffic Vol, veh/h	5	1	10	5	1	5	30	530	5	5	1840	5
Future Vol, veh/h	5	1	10	5	1	5	30	530	5	5	1840	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	50	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	5	1	11	5	1	5	32	558	5	5	1937	5

Major/Minor	Minor2		N	Ainor1			Major1		٨	/lajor2				
Conflicting Flow All	2238	2577	971	1410	2577	282	1942	0	0	563	0	0		
Stage 1	1950	1950	-	625	625	-	-	-	-	-	-	-		
Stage 2	288	627	-	785	1952	-	-	-	-	-	-	-		
Critical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34	-	-	5.34	-	-		
Critical Hdwy Stg 1	7.34	5.54	-	7.34	5.54	-	-	-	-	-	-	-		
Critical Hdwy Stg 2	6.74	5.54	-	6.74	5.54	-	-	-	-	-	-	-		
Follow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12	-	-	3.12	-	-		
Pot Cap-1 Maneuver	*413	*337	*497	*413	*337	*808	*625	-	-	985	-	-		
Stage 1	*510	*485	-	*713	*714	-	-	-	-	-	-	-		
Stage 2	*829	*713	-	*510	*485	-	-	-	-	-	-	-		
Platoon blocked, %	1	1	1	1	1	1	1	-	-	1	-	-		
Mov Cap-1 Maneuver	*392	*318	*497	*386	*318	*808	*625	-	-	985	-	-		
Mov Cap-2 Maneuver	*392	*318	-	*386	*318	-	-	-	-	-	-	-		
Stage 1	*484	*482	-	*677	*678	-	-	-	-	-	-	-		
Stage 2	*780	*676	-	*495	*482	-	-	-	-	-	-	-		
Approach	EB			WB			NB			SB				
HCM Control Delay, s	13.4			12.5			0.6			0				
HCM LOS	В			В										
Minor Lane/Major Mvr	nt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR					
Capacity (veh/h)		* 625	-	-	444	494	985	-	-					
HCM Lane V/C Ratio		0.051	-	-	0.038	0.023	0.005	-	-					
HCM Control Delay (s	5)	11.1	-	-	13.4	12.5	8.7	-	-					
HCM Lane LOS	,	В	-	-	В	В	А	-	-					
HCM 95th %tile Q(veh	ר)	0.2	-	-	0.1	0.1	0	-	-					
Notes														
~: Volume exceeds ca	apacity	\$: De	lay exc	eeds 30)0s	+: Com	putation	Not De	fined	*: All r	najor volu	ume in I	olatoon	

	٠	-	7	1	-	*	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	¢Î,		ľ	¢Î,		ľ	**	1	ľ	***	
Traffic Volume (veh/h)	0	0	0	25	0	35	0	530	35	40	1810	0
Future Volume (veh/h)	0	0	0	25	0	35	0	530	35	40	1810	0
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	0	0	0	26	0	37	0	558	37	42	1905	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	72	77	0	146	0	65	72	3052	1361	778	4385	0
Arrive On Green	0.00	0.00	0.00	0.04	0.00	0.04	0.00	1.00	1.00	1.00	1.00	0.00
Sat Flow, veh/h	1371	1870	0	1781	0	1585	236	3554	1585	823	5274	0
Grp Volume(v), veh/h	0	0	0	26	0	37	0	558	37	42	1905	0
Grp Sat Flow(s),veh/h/ln	1371	1870	0	1781	0	1585	236	1777	1585	823	1702	0
Q Serve(g_s), s	0.0	0.0	0.0	1.4	0.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.0	0.0	0.0	1.4	0.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0
Prop In Lane	1.00		0.00	1.00		1.00	1.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	72	77	0	146	0	65	72	3052	1361	778	4385	0
V/C Ratio(X)	0.00	0.00	0.00	0.18	0.00	0.57	0.00	0.18	0.03	0.05	0.43	0.00
Avail Cap(c_a), veh/h	358	468	0	517	0	396	72	3052	1361	778	4385	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	0.00	0.00	0.00	1.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	0.0	0.0	0.0	46.6	0.0	47.1	0.0	0.0	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.6	0.0	7.4	0.0	0.1	0.0	0.1	0.3	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	0.0	0.0	0.7	0.0	1.0	0.0	0.1	0.0	0.0	0.1	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	0.0	0.0	0.0	47.2	0.0	54.5	0.0	0.1	0.0	0.1	0.3	0.0
LnGrp LOS	Α	Α	Α	D	Α	D	А	Α	Α	А	Α	<u> </u>
Approach Vol, veh/h		0			63			595			1947	
Approach Delay, s/veh		0.0			51.5			0.1			0.3	
Approach LOS					D			А			А	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		90.9		9.1		90.9		9.1				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		65.0		25.0		65.0		25.0				
Max Q Clear Time (g_c+l1), s		2.0		0.0		2.0		4.3				
Green Ext Time (p_c), s		4.1		0.0		25.5		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			1.5									
HCM 6th LOS			А									

	•	*	t	۲	4	ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	5	1	11h		5	111
Traffic Volume (veh/h)	15	30	530	25	30	1805
Future Volume (veh/h)	15	30	530	25	30	1805
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A pbT)	1.00	1.00		1.00	1.00	
Parking Bus, Adi	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	n No		No			No
Adi Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adi Flow Rate, veh/h	16	32	558	26	32	1900
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh %	2	2	2	2	2	2
Can yeh/h	66	74	/317	200	780	4407
Arrivo On Croon	0.04	0.05	4017	1 00	1 00	1 00
Arrive On Green	1704	0.05	1.00	1.00	1.00	1.00
Sat Flow, ven/n	1/01	1000	5169	232	031	5274
Grp Volume(v), veh/h	16	32	379	205	32	1900
Grp Sat Flow(s),veh/h/In	1781	1585	1702	1829	831	1702
Q Serve(g_s), s	0.9	2.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.9	2.0	0.0	0.0	0.0	0.0
Prop In Lane	1.00	1.00		0.13	1.00	
Lane Grp Cap(c), veh/h	66	74	2938	1578	789	4407
V/C Ratio(X)	0.24	0.43	0.13	0.13	0.04	0.43
Avail Cap(c a), veh/h	445	412	2938	1578	789	4407
HCM Platoon Ratio	1.00	1.00	2.00	2.00	2.00	2.00
Unstream Filter(I)	1.00	1 00	1.00	1.00	1.00	1.00
Uniform Delay (d) s/veh	46.8	46.4	0.0	0.0	0.0	0.0
Incr Delay (d2) s/veh	1 0	3.0	0.0	0.0	0.0	0.0
Initial O Delay (uz), S/Vell	1.9	0.9	0.1	0.2	0.1	0.0
Initial Q Delay(03),s/Veh	0.0	0.0	0.0	0.0	0.0	0.0
mie BackOfQ(50%), veh/	INU.4	0.9	0.0	0.1	0.0	0.1
Unsig. Movement Delay,	s/veh	FO O	• •	<u> </u>	^	
LnGrp Delay(d),s/veh	48.7	50.3	0.1	0.2	0.1	0.3
LnGrp LOS	D	D	A	A	A	A
Approach Vol, veh/h	48		584			1932
Approach Delay, s/veh	49.8		0.1			0.3
Approach LOS	D		А			А
Timer - Assigned Phs		2				6
Phs Duration (G+Y+Rc)	s	91.3				91.3
Change Period $(V_{\pm}P_{0})$	2	50				50
Max Green Sotting (Cmg	3 3V) C	65.0				65.0
Max O Clear Time (c. c.	ax), S	0.00				0.00
wax Q Clear Time (g_C+	·11), S	2.0				2.0
Green Ext Time (p_c), s		3.9				25.2
Intersection Summary						
HCM 6th Ctrl Delay			1.2			
HCM 6th LOS			А			

	٠	-	\mathbf{r}	•	←	•	1	Ť	1	1	ŧ.	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	17.17	**	1	3	**	1	3	#1		3	**	1
Traffic Volume (veh/h)	335	395	325	170	410	95	100	155	40	530	705	580
Future Volume (veh/h)	335	395	325	170	410	95	100	155	40	530	705	580
Initial Q (Qb) veh	0	0	0_0	0	0	0	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	1.00	Ū	1.00	1.00	v	1.00	1.00	Ŭ	1.00	1.00	Ū	1.00
Parking Bus, Adi	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac	h	No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	353	416	0	179	432	0	105	163	0	558	742	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	415	1325		214	1325		233	417		580	888	
Arrive On Green	0.12	0.37	0.00	0.12	0.37	0.00	0.07	0.12	0.00	0.29	0.33	0.00
Sat Flow, veh/h	3456	3554	1585	1781	3554	1585	1781	3647	0	1781	3554	1585
Grp Volume(v), veh/h	353	416	0	179	432	0	105	163	0	558	742	0
Grp Sat Flow(s),veh/h/lr	n1728	1777	1585	1781	1777	1585	1781	1777	0	1781	1777	1585
Q Serve(g s), s	10.0	8.3	0.0	9.8	8.7	0.0	5.1	4.2	0.0	22.0	19.3	0.0
Cycle Q Clear(g c), s	10.0	8.3	0.0	9.8	8.7	0.0	5.1	4.2	0.0	22.0	19.3	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.00	1.00		1.00
Lane Grp Cap(c), veh/h	415	1325		214	1325		233	417		580	888	
V/C Ratio(X)	0.85	0.31		0.84	0.33		0.45	0.39		0.96	0.84	
Avail Cap(c_a), veh/h	415	1325		214	1325		238	711		580	1173	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/vel	h 43.1	22.3	0.0	43.0	22.4	0.0	35.5	40.8	0.0	28.1	31.5	0.0
Incr Delay (d2), s/veh	15.5	0.6	0.0	24.3	0.7	0.0	1.4	0.6	0.0	28.1	4.1	0.0
Initial Q Delay(d3),s/veh	n 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh	n/In5.0	3.4	0.0	5.6	3.6	0.0	2.2	1.8	0.0	15.2	7.7	0.0
Unsig. Movement Delay	/, s/veh	1										
LnGrp Delay(d),s/veh	58.6	22.9	0.0	67.3	23.1	0.0	36.9	41.4	0.0	56.2	35.6	0.0
LnGrp LOS	E	С		E	С		D	D		E	D	
Approach Vol, veh/h		769			611			268			1300	
Approach Delay, s/veh		39.3			36.0			39.7			44.4	
Approach LOS		D			D			D			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc)), 25.0	16.7	15.0	43.3	11.7	30.0	15.0	43.3				
Change Period (Y+Rc).	s 5.0	5.0	5.0	6.0	5.0	5.0	5.0	6.0				
Max Green Setting (Gm	na20.6	20.0	10.0	29.0	7.0	33.0	10.0	29.0				
Max Q Clear Time (g c	+1214.0s	6.2	11.8	10.3	7.1	21.3	12.0	10.7				
Green Ext Time (p_c), s	s 0.0	0.7	0.0	2.4	0.0	3.7	0.0	2.5				
Intersection Summary												
HCM 6th Ctrl Delay			40.9									
HCM 6th LOS			 D									

Notes

User approved pedestrian interval to be less than phase max green. Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

	≯	→	7	4	+	*	1	t	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	•	1	5	•	1	۲	44	1	5	**	1
Traffic Volume (veh/h)	30	5	5	75	5	110	10	1225	120	125	560	35
Future Volume (veh/h)	30	5	5	75	5	110	10	1225	120	125	560	35
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	32	5	5	79	5	116	11	1289	126	132	589	37
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	191	180	153	204	180	153	635	2505	1117	426	2856	1274
Arrive On Green	0.10	0.10	0.10	0.10	0.10	0.10	1.00	1.00	1.00	0.05	0.80	0.80
Sat Flow, veh/h	1270	1870	1585	1405	1870	1585	799	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	32	5	5	79	5	116	11	1289	126	132	589	37
Grp Sat Flow(s),veh/h/ln	1270	1870	1585	1405	1870	1585	799	1777	1585	1781	1777	1585
Q Serve(g_s), s	2.3	0.2	0.3	5.4	0.2	7.1	0.0	0.0	0.0	1.8	3.9	0.5
Cycle Q Clear(g_c), s	2.6	0.2	0.3	5.6	0.2	7.1	0.0	0.0	0.0	1.8	3.9	0.5
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	191	180	153	204	180	153	635	2505	1117	426	2856	1274
V/C Ratio(X)	0.17	0.03	0.03	0.39	0.03	0.76	0.02	0.51	0.11	0.31	0.21	0.03
Avail Cap(c_a), veh/h	387	468	396	420	468	396	635	2505	1117	464	2856	1274
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	42.1	40.9	41.0	43.5	40.9	44.1	0.0	0.0	0.0	2.8	2.3	2.0
Incr Delay (d2), s/veh	0.4	0.1	0.1	1.2	0.1	7.6	0.0	0.8	0.2	0.4	0.2	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.7	0.1	0.1	1.9	0.1	3.1	0.0	0.3	0.1	0.5	0.8	0.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	42.5	41.0	41.1	44.7	41.0	51.6	0.0	0.8	0.2	3.2	2.5	2.0
LnGrp LOS	D	D	D	D	D	D	Α	Α	Α	Α	Α	<u> </u>
Approach Vol, veh/h		42			200			1426			758	
Approach Delay, s/veh		42.2			48.6			0.7			2.6	
Approach LOS		D			D			А			А	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	9.9	75.5		14.6		85.4		14.6				
Change Period (Y+Rc), s	5.0	5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s	7.0	53.0		25.0		65.0		25.0				
Max Q Clear Time (g_c+l1), s	3.8	2.0		4.6		5.9		9.1				
Green Ext Time (p_c), s	0.1	13.5		0.1		4.4		0.5				
Intersection Summary												
HCM 6th Ctrl Delay			6.0									
HCM 6th LOS			А									

	٠	¥	1	t	ţ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1	5	111	11h	
Traffic Volume (veh/h)	30	15	5	1455	710	5
Future Volume (veh/h)	30	15	5	1455	710	5
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac	h No			No	No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	31	16	5	1516	740	5
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh %	2	2	2	2	2	2
Can veh/h	65	58	690	4409	4519	31
Arrive On Green	0.04	0.04	1.00	1.00	1.00	1.00
Sat Flow, veh/h	1781	1585	715	5274	5401	
Grn Volume(v) veh/h	21	16	5	1516	/121	264
Crp Set Elow(a) yeh/h/l	J 1701	1595	715	1702	401	1964
	11/01	1000	115	0.0	0.0	004
Q Serve(Q_S), S	1.7	1.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	1.7	1.0	0.0	0.0	0.0	0.0
Prop in Lane	1.00	1.00	1.00	4400	00.40	0.02
Lane Grp Cap(c), ven/n	65	58	690	4409	2940	1610
V/C Ratio(X)	0.48	0.28	0.01	0.34	0.16	0.16
Avail Cap(c_a), veh/h	445	396	690	4409	2940	1610
HCM Platoon Ratio	1.00	1.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/vel	n 47.2	46.9	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	5.4	2.6	0.0	0.2	0.1	0.2
Initial Q Delay(d3),s/veh	n 0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh	n/In0.9	0.4	0.0	0.1	0.0	0.1
Unsig. Movement Delay	, s/veh					
LnGrp Delav(d).s/veh	52.6	49.5	0.0	0.2	0.1	0.2
LnGrp LOS	D	D	A	A	A	A
Annroach Vol. veh/h	47			1521	745	/\
Approach Delay shuch	51 5			0.2	0.2	
Approach LOS	01.0			0.2	U.Z	
Approach LOS	U			A	A	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc)	, S	91.4		8.6		91.4
Change Period (Y+Rc),	S	5.0		5.0		5.0
Max Green Setting (Gm	iax), s	65.0		25.0		65.0
Max Q Clear Time (g c	+l1). s	2.0		3.7		2.0
Green Ext Time (p_c), s	s	16.3		0.1		5.2
Intersection Summary						
HCM 6th Ctrl Delay			12			
HCM 6th LOS			Δ			
			А			

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		7	**		٢	朴朴î ;	
Traffic Vol, veh/h	5	1	15	5	1	5	20	1535	5	5	745	5
Future Vol, veh/h	5	1	15	5	1	5	20	1535	5	5	745	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	50	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	5	1	16	5	1	5	21	1616	5	5	784	5

Major/Minor	Minor2		N	/linor1			Major1		Ν	/lajor2				
Conflicting Flow All	1486	2460	395	1985	2460	811	789	0	0	1621	0	0		
Stage 1	797	797	-	1661	1661	-	-	-	-	-	-	-		
Stage 2	689	1663	-	324	799	-	-	-	-	-	-	-		
Critical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34	-	-	5.34	-	-		
Critical Hdwy Stg 1	7.34	5.54	-	7.34	5.54	-	-	-	-	-	-	-		
Critical Hdwy Stg 2	6.74	5.54	-	6.74	5.54	-	-	-	-	-	-	-		
Follow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12	-	-	3.12	-	-		
Pot Cap-1 Maneuver	*450	*69	*756	*180	*69	*575	*950	-	-	*722	-	-		
Stage 1	*768	*733	-	*590	*561	-	-	-	-	-	-	-		
Stage 2	*590	*561	-	*776	*731	-	-	-	-	-	-	-		
Platoon blocked, %	1	1	1	1	1	1	1	-	-	1	-	-		
Mov Cap-1 Maneuver	*431	*67	*756	*171	*67	*575	*950	-	-	*722	-	-		
Mov Cap-2 Maneuver	*431	*67	-	*171	*67	-	-	-	-	-	-	-		
Stage 1	*751	*728	-	*577	*548	-	-	-	-	-	-	-		
Stage 2	*570	*548	-	*753	*726	-	-	-	-	-	-	-		
Approach	EB			WB			NB			SB				
HCM Control Delay, s	13.4			23.3			0.1			0.1				
HCM LOS	В			С										
Minor Lane/Major Mvr	nt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR					
Capacity (veh/h)		* 950	-	-	453	208	* 722	-	-					
HCM Lane V/C Ratio		0.022	-	-	0.049	0.056	0.007	-	-					
HCM Control Delay (s	;)	8.9	-	-	13.4	23.3	10	-	-					
HCM Lane LOS	/	А	-	-	В	С	В	-	-					
HCM 95th %tile Q(veh	ר)	0.1	-	-	0.2	0.2	0	-	-					
Notes														
~: Volume exceeds ca	apacity	\$: De	lay exc	eeds 30)0s ·	+: Com	putation	Not De	fined	*: All r	najor volu	ime in platoo	n	

	٠	-	7	1	-	*	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	¢Î,		ሻ	¢Î,		٦	**	1	٦	***	
Traffic Volume (veh/h)	0	0	0	45	0	140	0	1415	70	20	745	0
Future Volume (veh/h)	0	0	0	45	0	140	0	1415	70	20	745	0
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	0	0	0	47	0	147	0	1489	74	21	784	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	72	220	0	282	0	187	72	2780	1240	330	3994	0
Arrive On Green	0.00	0.00	0.00	0.12	0.00	0.12	0.00	1.00	1.00	1.00	1.00	0.00
Sat Flow, veh/h	1241	1870	0	1781	0	1585	690	3554	1585	329	5274	0
Grp Volume(v), veh/h	0	0	0	47	0	147	0	1489	74	21	784	0
Grp Sat Flow(s),veh/h/ln	1241	1870	0	1781	0	1585	690	1777	1585	329	1702	0
Q Serve(g_s), s	0.0	0.0	0.0	2.4	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.0	0.0	0.0	2.4	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0
Prop In Lane	1.00		0.00	1.00		1.00	1.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	72	220	0	282	0	187	72	2780	1240	330	3994	0
V/C Ratio(X)	0.00	0.00	0.00	0.17	0.00	0.79	0.00	0.54	0.06	0.06	0.20	0.00
Avail Cap(c_a), veh/h	236	468	0	517	0	396	72	2780	1240	330	3994	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	0.00	0.00	0.00	1.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	0.0	0.0	0.0	40.0	0.0	42.9	0.0	0.0	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.3	0.0	7.2	0.0	0.7	0.1	0.4	0.1	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	0.0	0.0	1.1	0.0	3.9	0.0	0.3	0.0	0.0	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	0.0	0.0	0.0	40.2	0.0	50.0	0.0	0.7	0.1	0.4	0.1	0.0
LnGrp LOS	A	A	A	D	A	D	Α	A	A	A	A	<u> </u>
Approach Vol, veh/h		0			194			1563			805	
Approach Delay, s/veh		0.0			47.7			0.7			0.1	
Approach LOS					D			А			А	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		83.2		16.8		83.2		16.8				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		65.0		25.0		65.0		25.0				
Max Q Clear Time (g_c+l1), s		2.0		0.0		2.0		11.0				
Green Ext Time (p_c), s		17.4		0.0		6.7		0.8				
Intersection Summary												
HCM 6th Ctrl Delay			4.1									
HCM 6th LOS			А									

	•	*	t	۲	4	ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	٦	1	***		٦	***
Traffic Volume (veh/h)	35	40	1440	20	25	745
Future Volume (veh/h)	35	40	1440	20	25	745
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	n No		No			No
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	37	42	1516	21	26	784
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh. %	2	2	2	2	2	2
Cap, veh/h	79	70	4440	62	361	4369
Arrive On Green	0.04	0.04	1.00	1.00	1.00	1.00
Sat Flow, veh/h	1781	1585	5358	72	338	5274
Grn Volume(v), veh/h	37	12	001	5/3	26	78/
Grp Sat Flow(s) veh/h/ln	1781	1585	1702	1857	228	1702
O Sorvo(q , s), s	20	26	0.0	0.0	0.0	0.0
Q Serve(\underline{y}), S	2.0	2.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	2.0	2.0	0.0	0.0	1.00	0.0
Prop in Lane	1.00	1.00	0040	0.04	1.00	4000
Lane Grp Cap(c), ven/n	/9	/0	2912	1589	361	4369
V/C Ratio(X)	0.47	0.60	0.34	0.34	0.07	0.18
Avail Cap(c_a), veh/h	445	396	2912	1589	361	4369
HCM Platoon Ratio	1.00	1.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	46.6	46.9	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	4.2	7.8	0.3	0.6	0.4	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/	/In1.0	1.2	0.1	0.3	0.0	0.0
Unsig. Movement Delay.	, s/veh					
LnGrp Delav(d).s/veh	50.9	54.7	0.3	0.6	0.4	0.1
LnGrp LOS	D	D	A	A	A	A
Approach Vol. veh/h	79		1537			810
Approach Delay s/veh	52.9		0.4			0.1
Approach LOS	D		υ			Δ
	U		Л			Л
Timer - Assigned Phs		2				6
Phs Duration (G+Y+Rc),	S	90.6				90.6
Change Period (Y+Rc), s	s	5.0				5.0
Max Green Setting (Gma	ax), s	65.0				65.0
Max Q Clear Time (a c+	-I1). s	2.0				2.0
Green Ext Time (p c) s	.,, •	15.1				6.9
· · · · · · · · · · · · · · · · · · ·						
Intersection Summary						
HCM 6th Ctrl Delay			2.0			
HCM 6th LOS			Α			

	≯	-	7	•	←	*	1	Ť	1	1	ŧ.	~	
Movement	FBI	FBT	FBR	WBI	WBT	WBR	NBI	NBT	NBR	SBI	SBT	SBR	
Lane Configurations	**	**	1	3	**	1	*	*1		3	**	1	
Traffic Volume (veh/h)	570	655	90	65	440	265	445	645	165	210	330	350	
Future Volume (veh/h)	570	655	90	65	440	265	445	645	165	210	330	350	
Initial O (Ob) veh	0/0	000	0	0	0	0	0	0+0	0	0	000	000	
Ped-Bike Adi(A_nbT)	1 00	U	1 00	1 00	v	1 00	1 00	Ŭ	1 00	1 00	Ū	1 00	
Parking Bus Adi	1.00	1 00	1.00	1.00	1 00	1.00	1.00	1 00	1.00	1.00	1 00	1.00	
Work Zone On Approac	h	No	1.00	1.00	No	1.00	1.00	No		1.00	No	1.00	
Adi Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	
Adi Flow Rate, veh/h	600	689	0	68	463	0	468	679	0	221	347	0	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh. %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap. veh/h	622	1453		88	1060		500	824		288	646		
Arrive On Green	0.18	0.41	0.00	0.05	0.30	0.00	0.17	0.23	0.00	0.17	0.30	0.00	
Sat Flow, veh/h	3456	3554	1585	1781	3554	1585	1781	3647	0	1781	3554	1585	
Grp Volume(v), veh/h	600	689	0	68	463	0	468	679	0	221	347	0	
Grp Sat Flow(s).veh/h/lr	1728	1777	1585	1781	1777	1585	1781	1777	0	1781	1777	1585	
Q Serve(q s), s	17.2	14.2	0.0	3.8	10.5	0.0	17.0	18.1	0.0	10.0	8.1	0.0	
Cycle Q Clear(q c), s	17.2	14.2	0.0	3.8	10.5	0.0	17.0	18.1	0.0	10.0	8.1	0.0	
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.00	1.00		1.00	
Lane Grp Cap(c), veh/h	622	1453		88	1060		500	824		288	646		
V/C Ratio(X)	0.96	0.47		0.77	0.44		0.94	0.82		0.77	0.54		
Avail Cap(c_a), veh/h	622	1453		178	1060		500	1066		288	888		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.67	1.67	1.67	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	
Uniform Delay (d), s/veh	n 40.7	21.7	0.0	47.0	28.3	0.0	28.5	36.5	0.0	28.9	31.3	0.0	
Incr Delay (d2), s/veh	27.4	1.1	0.0	13.4	1.3	0.0	25.4	4.2	0.0	11.6	0.7	0.0	
Initial Q Delay(d3),s/veh	n 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh	n/Ir9.4	5.8	0.0	2.0	4.5	0.0	6.2	8.0	0.0	4.8	3.2	0.0	
Unsig. Movement Delay	v, s/veh	1											
LnGrp Delay(d),s/veh	68.1	22.8	0.0	60.4	29.6	0.0	54.0	40.7	0.0	40.5	32.0	0.0	
LnGrp LOS	E	С		E	С		D	D		D	С		
Approach Vol, veh/h		1289			531			1147			568		
Approach Delay, s/veh		43.9			33.6			46.1			35.3		
Approach LOS		D			С			D			D		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)	, \$ 5.0	28.2	9.9	46.9	20.0	23.2	21.0	35.8					
Change Period (Y+Rc),	s 5.0	5.0	5.0	6.0	5.0	5.0	5.0	6.0					
Max Green Setting (Gm	a 1 ¢), G	30.0	10.0	29.0	15.0	25.0	16.0	23.0					
Max Q Clear Time (g_c-	+1112),0s	20.1	5.8	16.2	19.0	10.1	19.2	12.5					
Green Ext Time (p_c), s	0.0	3.0	0.0	3.6	0.0	1.8	0.0	2.1					
Intersection Summary													
HCM 6th Ctrl Delay			417										
HCM 6th LOS			D										

Notes

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

	٠	→	\mathbf{r}	4	-	•	1	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	1	7	•	1	ሻ	^	1	٦	^	1
Traffic Volume (veh/h)	35	20	20	195	10	130	10	368	65	110	1502	20
Future Volume (veh/h)	35	20	20	195	10	130	10	368	65	110	1502	20
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	37	21	21	205	11	137	11	387	68	116	1581	21
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	292	341	289	308	341	289	228	2202	982	738	2550	1137
Arrive On Green	0.18	0.18	0.18	0.18	0.18	0.18	1.00	1.00	1.00	0.05	0.72	0.72
Sat Flow, veh/h	1240	1870	1585	1365	1870	1585	317	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	37	21	21	205	11	137	11	387	68	116	1581	21
Grp Sat Flow(s),veh/h/ln	1240	1870	1585	1365	1870	1585	317	1777	1585	1781	1777	1585
Q Serve(g_s), s	2.5	0.9	1.1	14.6	0.5	7.7	0.8	0.0	0.0	2.2	22.6	0.4
Cycle Q Clear(g_c), s	3.0	0.9	1.1	15.5	0.5	7.7	13.6	0.0	0.0	2.2	22.6	0.4
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	292	341	289	308	341	289	228	2202	982	738	2550	1137
V/C Ratio(X)	0.13	0.06	0.07	0.67	0.03	0.47	0.05	0.18	0.07	0.16	0.62	0.02
Avail Cap(c_a), veh/h	376	468	396	401	468	396	228	2202	982	777	2550	1137
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	34.9	33.8	33.9	40.2	33.6	36.6	1.4	0.0	0.0	5.2	7.2	4.0
Incr Delay (d2), s/veh	0.2	0.1	0.1	2.7	0.0	1.2	0.4	0.2	0.1	0.1	1.1	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.8	0.4	0.4	5.0	0.2	3.0	0.0	0.1	0.0	0.7	6.8	0.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	35.1	33.9	34.0	42.9	33.7	37.8	1.8	0.2	0.1	5.3	8.3	4.1
LnGrp LOS	D	С	С	D	С	D	A	A	A	A	A	<u> </u>
Approach Vol, veh/h		79			353			466			1718	
Approach Delay, s/veh		34.5			40.6			0.2			8.1	
Approach LOS		С			D			А			А	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	9.8	67.0		23.2		76.8		23.2				
Change Period (Y+Rc), s	5.0	5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s	7.0	53.0		25.0		65.0		25.0				
Max Q Clear Time (q c+l1), s	4.2	15.6		5.0		24.6		17.5				
Green Ext Time (p_c), s	0.1	3.0		0.2		16.8		0.7				
Intersection Summary												
HCM 6th Ctrl Delay			11.9									
HCM 6th LOS			В									

-	٠	¥	1	t	ŧ	~
Movement E	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	٦	1	٦	^	个个 Pr	
Traffic Volume (veh/h)	15	15	35	473	1857	55
Future Volume (veh/h)	15	15	35	473	1857	55
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1	00.1	1.00	1.00			1.00
Parking Bus, Adj 1	00.1	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln 18	870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	16	16	38	520	2041	60
Peak Hour Factor 0).91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh. %	2	2	2	2	2	2
Cap veh/h	52	47	242	4445	4438	130
Arrive On Green 0	0.03	0.03	1 00	1 00	1 00	1 00
Sat Flow, yeh/h 17	781	1585	195	5274	5266	150
Crn Volume(v) veh/h	16	16	20	520	1262	720
Grp Volume(v), ven/m	10	10	30	1700	1302	1042
	101	1000	195	1702	1702	1043
Q Serve(g_s), s	0.9	1.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.9	1.0	0.0	0.0	0.0	0.0
Prop In Lane 1	1.00	1.00	1.00			0.08
Lane Grp Cap(c), veh/h	52	47	242	4445	2963	1605
V/C Ratio(X) 0).31	0.34	0.16	0.12	0.46	0.46
Avail Cap(c_a), veh/h 4	445	396	242	4445	2963	1605
HCM Platoon Ratio 1	1.00	1.00	2.00	2.00	2.00	2.00
Upstream Filter(I) 1	00.1	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 4	17.5	47.6	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	3.2	4.3	1.4	0.1	0.5	1.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%).veh/lr	n0.4	0.4	0.1	0.0	0.2	0.4
Unsig, Movement Delay, s	s/veh					
LnGrp Delay(d) s/veh 5	50.7	51.9	14	01	0.5	10
LnGrp LOS	D	D	Δ	Δ	Δ	Α
Approach Vol. veh/h	32	0	~~~~	558	2101	~
Approach Vol, ven/m	JZ 51 2			0.1	2101	
Approach LOS	01.0			0.1	0.7	
Approach LOS	U			A	A	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s	S	92.1		7.9		92.1
Change Period (Y+Rc), s		5.0		5.0		5.0
Max Green Setting (Gmax	x), s	65.0		25.0		65.0
Max Q Clear Time (q. c+11	1) s	2.0		3.0		2.0
Green Ext Time (n_c) s	.,, 3	5.8		0.0		27.5
		0.0		0.1		21.0
Intersection Summary						
HCM 6th Ctrl Delay			1.2			
HCM 6th LOS			А			

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		1	4 4 %		1	乔乔 萨	
Traffic Vol, veh/h	5	1	10	5	1	5	30	543	5	5	1847	5
Future Vol, veh/h	5	1	10	5	1	5	30	543	5	5	1847	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	50	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
M∨mt Flow	5	1	11	5	1	5	32	572	5	5	1944	5

Major/Minor	Minor2		N	Minor1			Major1		Ν	/lajor2			
Conflicting Flow All	2250	2598	975	1427	2598	289	1949	0	0	577	0	0	
Stage 1	1957	1957	-	639	639	-	-	-	-	-	-	-	
Stage 2	293	641	-	788	1959	-	-	-	-	-	-	-	
Critical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34	-	-	5.34	-	-	
Critical Hdwy Stg 1	7.34	5.54	-	7.34	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.74	5.54	-	6.74	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12	-	-	3.12	-	-	
Pot Cap-1 Maneuver	*413	*317	*497	*413	*317	*808	*625	-	-	969	-	-	
Stage 1	*510	*485	-	*696	*703	-	-	-	-	-	-	-	
Stage 2	*829	*702	-	*510	*485	-	-	-	-	-	-	-	
Platoon blocked, %	1	1	1	1	1	1	1	-	-	1	-	-	
Mov Cap-1 Maneuver	*392	*299	*497	*386	*299	*808	*625	-	-	969	-	-	
Mov Cap-2 Maneuver	*392	*299	-	*386	*299	-	-	-	-	-	-	-	
Stage 1	*484	*482	-	*660	*667	-	-	-	-	-	-	-	
Stage 2	*780	*666	-	*495	*482	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	13.5			12.5			0.6			0			
HCM LOS	В			В									
Minor Lane/Major Mvi	mt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR				
Capacity (veh/h)		* 625	-	-	442	489	969	-	-				
HCM Lane V/C Ratio		0.051	-	-	0.038	0.024	0.005	-	-				
HCM Control Delay (s	5)	11.1	-	-	13.5	12.5	8.7	-	-				
HCM Lane LOS	,	В	-	-	В	В	А	-	-				
HCM 95th %tile Q(veh	า)	0.2	-	-	0.1	0.1	0	-	-				
Notes													
~: Volume exceeds ca	apacity	\$: De	lay exc	eeds 3	00s -	+: Com	putation	Not De	fined	*: All r	najor volu	ume in platoor	ו

	٠	-	\mathbf{r}	*	+	*	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	Þ		7	Þ		۲	11	1	1	** 12	
Traffic Volume (veh/h)	41	0	25	25	0	35	45	502	35	40	1755	62
Future Volume (veh/h)	41	0	25	25	0	35	45	502	35	40	1755	62
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	43	0	26	26	0	37	47	528	37	42	1847	65
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	141	0	115	151	0	115	266	2940	1311	772	4190	147
Arrive On Green	0.07	0.00	0.07	0.07	0.00	0.07	1.00	1.00	1.00	1.00	1.00	1.00
Sat Flow, veh/h	1371	0	1585	1385	0	1585	235	3554	1585	846	5064	178
Grp Volume(v), veh/h	43	0	26	26	0	37	47	528	37	42	1241	671
Grp Sat Flow(s),veh/h/ln	1371	0	1585	1385	0	1585	235	1777	1585	846	1702	1838
Q Serve(g_s), s	3.1	0.0	1.5	1.8	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	5.3	0.0	1.5	3.4	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.10
Lane Grp Cap(c), veh/h	141	0	115	151	0	115	266	2940	1311	772	2816	1521
V/C Ratio(X)	0.30	0.00	0.23	0.17	0.00	0.32	0.18	0.18	0.03	0.05	0.44	0.44
Avail Cap(c_a), veh/h	384	0	396	397	0	396	266	2940	1311	772	2816	1521
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	46.5	0.0	43.7	45.3	0.0	44.0	0.0	0.0	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	1.2	0.0	1.0	0.5	0.0	1.6	1.4	0.1	0.0	0.1	0.5	0.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.1	0.0	0.6	0.6	0.0	0.9	0.1	0.1	0.0	0.0	0.2	0.4
Unsig. Movement Delay, s/veh				1- 0		1= 0		• •		• •	• -	
LnGrp Delay(d),s/veh	47.7	0.0	44.7	45.8	0.0	45.6	1.4	0.1	0.0	0.1	0.5	0.9
LnGrp LOS	D	<u>A</u>	D	D	<u>A</u>	D	<u>A</u>	A	A	A	A	<u> </u>
Approach Vol, veh/h		69			63			612			1954	
Approach Delay, s/veh		46.6			45.7			0.2			0.6	
Approach LOS		D			D			A			A	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		87.7		12.3		87.7		12.3				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		65.0		25.0		65.0		25.0				
Max Q Clear Time (g_c+l1), s		2.0		7.3		2.0		5.4				
Green Ext Time (p_c), s		5.9		0.2		23.7		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			2.8									
HCM 6th LOS			Α									

4	•	*	Ť	1	1	ŧ
Movement WB	WBR	WBL	NBT	NBR	SBL	SBT
Lane Configurations	1	5	**1		3	***
Traffic Volume (veh/h) 1	5 30	15	547	25	30	1835
Future Volume (veh/h) 1	5 30	15	547	25	30	1835
Initial Q (Qb), veh) (0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.0) 1.00	1.00		1.00	1.00	
Parking Bus, Adj 1.0	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach N)	h No	No			No
Adj Sat Flow, veh/h/ln 187) 1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h 1	5 32	16	576	26	32	1932
Peak Hour Factor 0.9	5 0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2 2	2	2	2	2	2
Cap, veh/h 6	6 74	66	4324	194	777	4407
Arrive On Green 0.0	1 0.05	0.04	1.00	1.00	1.00	1.00
Sat Flow, veh/h 178	1 1585	1781	5177	225	817	5274
Grp Volume(v). veh/h 1	3 32	16	391	211	32	1932
Grp Sat Flow(s).veh/h/ln178	1 1585	1781	1702	1830	817	1702
Q Serve(q s). s 0.1	2.0	0.9	0.0	0.0	0.0	0.0
Cycle Q Clear(q c), s 0.	2.0	0.9	0.0	0.0	0.0	0.0
Prop In Lane 1.0) 1.00	1.00		0.12	1.00	
Lane Grp Cap(c), veh/h 6	6 74	66	2938	1580	777	4407
V/C Ratio(X) 0.2	1 0.43	0.24	0.13	0.13	0.04	0.44
Avail Cap(c a), veh/h 44	5 412	445	2938	1580	777	4407
HCM Platoon Ratio 1.0) 1.00	1.00	2.00	2.00	2.00	2.00
Upstream Filter(I) 1.0) 1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 46.	3 46.4	146.8	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh 1.	3.9	1.9	0.1	0.2	0.1	0.3
Initial Q Delay(d3).s/veh 0.) 0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%).veh/lr0.	1 0.9	/lr0.4	0.0	0.1	0.0	0.1
Unsig. Movement Delay. s/v	eh	, s/veh				•••
LnGrp Delay(d).s/veh 48.	7 50.3	48.7	0.1	0.2	0.1	0.3
LnGrp LOS) D	D	A	A	А	A
Approach Vol. veh/h 4	3	48	602			1964
Approach Delay s/veh 49	3	49.8	0.1			0.3
Approach LOS)	D.	Α			0.0 A
Timer - Assigned Phs	2					6
Phs Duration (G+Y+Rc), s	91.3	, S				91.3
Change Period (Y+Rc), s	5.0	S				5.0
Max Green Setting (Gmax),	s 65.0	ax), s				65.0
Max Q Clear Time (g_c+l1),	s 2.0	+l1), s				2.0
Green Ext Time (p_c), s	4.0	;				26.0
Intersection Summary						
HCM 6th Ctrl Delay			1.2			
HCM 6th LOS			А			
HCM 6th Signalized Intersection Summary 6: Washington St & E 70th Ave

メーシュー イイ インシナイ

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	17	**	1	1	11	1	1	*		1	**	1	
Traffic Volume (veh/h)	340	395	325	170	410	97	100	165	40	534	722	589	
Future Volume (veh/h)	340	395	325	170	410	97	100	165	40	534	722	589	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	358	416	0	179	432	0	105	174	0	562	760	0	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	415	1309		214	1309		232	433		581	905		
Arrive On Green	0.12	0.37	0.00	0.12	0.37	0.00	0.07	0.12	0.00	0.29	0.34	0.00	
Sat Flow, veh/h	3456	3554	1585	1781	3554	1585	1781	3647	0	1781	3554	1585	
Grp Volume(v), veh/h	358	416	0	179	432	0	105	174	0	562	760	0	
Grp Sat Flow(s),veh/h/li	n1728	1777	1585	1781	1777	1585	1781	1777	0	1781	1777	1585	
Q Serve(g_s), s	10.2	8.4	0.0	9.8	8.7	0.0	5.1	4.5	0.0	22.0	19.8	0.0	
Cycle Q Clear(g_c), s	10.2	8.4	0.0	9.8	8.7	0.0	5.1	4.5	0.0	22.0	19.8	0.0	
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.00	1.00		1.00	
Lane Grp Cap(c), veh/h	415	1309		214	1309		232	433		581	905		
V/C Ratio(X)	0.86	0.32		0.84	0.33		0.45	0.40		0.97	0.84		
Avail Cap(c_a), veh/h	415	1309		214	1309		237	711		581	1173		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	
Uniform Delay (d), s/vel	h 43.2	22.6	0.0	43.0	22.7	0.0	35.2	40.6	0.0	27.9	31.2	0.0	
Incr Delay (d2), s/veh	16.9	0.6	0.0	24.3	0.7	0.0	1.4	0.6	0.0	29.3	4.4	0.0	
Initial Q Delay(d3),s/vel	n 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),vel	n/In5.2	3.5	0.0	5.6	3.6	0.0	2.2	2.0	0.0	15.5	8.0	0.0	
Unsig. Movement Delay	/, s/veh												
LnGrp Delay(d),s/veh	60.1	23.2	0.0	67.3	23.4	0.0	36.6	41.2	0.0	57.2	35.6	0.0	
LnGrp LOS	E	С		E	С		D	D		E	D		
Approach Vol, veh/h		774			611			279			1322		
Approach Delay, s/veh		40.3			36.3			39.4			44.8		
Approach LOS		D			D			D			D		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)), 2 5.0	17.2	15.0	42.8	11.7	30.5	15.0	42.8					
Change Period (Y+Rc),	s 5.0	5.0	5.0	6.0	5.0	5.0	5.0	6.0					
Max Green Setting (Gm	na&0,.6	20.0	10.0	29.0	7.0	33.0	10.0	29.0					
Max Q Clear Time (g_c	+1214),0s	6.5	11.8	10.4	7.1	21.8	12.2	10.7					
Green Ext Time (p_c), s	s 0.0	0.7	0.0	2.4	0.0	3.7	0.0	2.5					
Intersection Summary													
HCM 6th Ctrl Delay			41.4										
HCM 6th LOS			D										

Notes

User approved pedestrian interval to be less than phase max green. Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection

Int Delay, s/veh	0.3								
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations		1		***	***				
Traffic Vol, veh/h	0	60	0	582	1805	0			
Future Vol, veh/h	0	60	0	582	1805	0			
Conflicting Peds, #/hr	0	0	0	0	0	0			
Sign Control	Stop	Stop	Free	Free	Free	Free			
RT Channelized	-	None	-	None	-	None			
Storage Length	-	0	-	-	-	-			
Veh in Median Storage	,# 0	-	-	0	0	-			
Grade, %	0	-	-	0	0	-			
Peak Hour Factor	95	95	95	95	95	95			
Heavy Vehicles, %	2	2	2	2	2	2			
Mvmt Flow	0	63	0	613	1900	0			

Major/Minor	Minor2	Ν	/lajor1	Major	2		
Conflicting Flow All	-	950	-	0	- 0		
Stage 1	-	-	-	-			
Stage 2	-	-	-	-			
Critical Hdwy	-	7.14	-	-			
Critical Hdwy Stg 1	-	-	-	-			
Critical Hdwy Stg 2	-	-	-	-			
Follow-up Hdwy	-	3.92	-	-			
Pot Cap-1 Maneuver	0	*486	0	-	- 0		
Stage 1	0	-	0	-	- 0		
Stage 2	0	-	0	-	- 0		
Platoon blocked, %		1		-	-		
Mov Cap-1 Maneuver	r –	*486	-	-			
Mov Cap-2 Maneuver	r -	-	-	-			
Stage 1	-	-	-	-			
Stage 2	-	-	-	-			
Approach	FB		NB	S	В		
HCM Control Delay	13.5		0		0		
HCM LOS	B		v		•		
	5						
		NDT		0.07			
Minor Lane/Major MV	mt	NRIF	BLN1	SBI			
Capacity (veh/h)		-	486	-			
HCM Lane V/C Ratio		-	0.13	-			
HCM Control Delay (s	5)	-	13.5	-			
HCM Lane LOS		-	В	-			
HCM 95th %tile Q(vel	h)	-	0.4	-			
Notes							
~: Volume exceeds ca	apacity	\$: De	lay exce	eeds 300s	+: Comp	utation Not Defined	*: All major volume in platoon

HCM 6th Signalized Intersection Summary 1: Washington St & E 78th Ave

	٠	-	$\mathbf{\hat{z}}$	•	-	•	1	t	1	4	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	•	1	ľ	†	1	7	**	1	1	**	1
Traffic Volume (veh/h)	30	5	5	75	5	110	10	1232	120	125	571	35
Future Volume (veh/h)	30	5	5	75	5	110	10	1232	120	125	571	35
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	32	5	5	79	5	116	11	1297	126	132	601	37
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	191	180	153	204	180	153	629	2505	1117	424	2856	1274
Arrive On Green	0.10	0.10	0.10	0.10	0.10	0.10	1.00	1.00	1.00	0.05	0.80	0.80
Sat Flow, veh/h	1270	1870	1585	1405	1870	1585	790	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	32	5	5	79	5	116	11	1297	126	132	601	37
Grp Sat Flow(s),veh/h/ln	1270	1870	1585	1405	1870	1585	790	1777	1585	1781	1777	1585
Q Serve(g_s), s	2.3	0.2	0.3	5.4	0.2	7.1	0.0	0.0	0.0	1.8	4.0	0.5
Cycle Q Clear(g_c), s	2.6	0.2	0.3	5.6	0.2	7.1	0.0	0.0	0.0	1.8	4.0	0.5
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	191	180	153	204	180	153	629	2505	1117	424	2856	1274
V/C Ratio(X)	0.17	0.03	0.03	0.39	0.03	0.76	0.02	0.52	0.11	0.31	0.21	0.03
Avail Cap(c_a), veh/h	387	468	396	420	468	396	629	2505	1117	462	2856	1274
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	42.1	40.9	41.0	43.5	40.9	44.1	0.0	0.0	0.0	2.8	2.3	2.0
Incr Delay (d2), s/veh	0.4	0.1	0.1	1.2	0.1	7.6	0.1	0.8	0.2	0.4	0.2	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.7	0.1	0.1	1.9	0.1	3.1	0.0	0.3	0.1	0.5	0.8	0.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	42.5	41.0	41.1	44.7	41.0	51.6	0.1	0.8	0.2	3.2	2.5	2.0
LnGrp LOS	D	D	D	D	D	D	Α	Α	Α	Α	Α	<u> </u>
Approach Vol, veh/h		42			200			1434			770	
Approach Delay, s/veh		42.2			48.6			0.7			2.6	
Approach LOS		D			D			А			А	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	9.9	75.5		14.6		85.4		14.6				
Change Period (Y+Rc), s	5.0	5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s	7.0	53.0		25.0		65.0		25.0				
Max Q Clear Time (g c+l1), s	3.8	2.0		4.6		6.0		9.1				
Green Ext Time (p_c), s	0.1	13.7		0.1		4.5		0.5				
Intersection Summary												
HCM 6th Ctrl Delay			5.9									
HCM 6th LOS			А									

,	٠	¥	1	t	ţ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	2	1	5	***	4 4 %	
Traffic Volume (veh/h)	30	15	5	1462	721	5
Future Volume (veh/h)	30	15	5	1462	721	5
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	1.00	1.00	1.00		-	1.00
Parking Bus, Adi	1.00	1.00	1.00	1 00	1 00	1.00
Work Zone On Approach	n No		1.00	No	No	1.00
Adi Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Elow Poto voh/h	21	1070	5	1523	751	5
Auj Flow Rale, ven/n	0.06	0.06	0.06	0.06	0.06	0.06
	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Ven, %	2	2	2	2	2	2
Cap, veh/h	65	58	684	4409	4519	30
Arrive On Green	0.04	0.04	1.00	1.00	1.00	1.00
Sat Flow, veh/h	1781	1585	708	5274	5402	35
Grp Volume(v), veh/h	31	16	5	1523	488	268
Grp Sat Flow(s), veh/h/ln	1781	1585	708	1702	1702	1864
Q Serve(q s). s	1.7	1.0	0.0	0.0	0.0	0.0
Cycle Q Clear(q , c), s	1.7	1.0	0.0	0.0	0.0	0.0
Pron In Lane	1 00	1 00	1 00	0.0	0.0	0.02
Lane Grn Can(c) veh/h	65	58	68/	1100	20/10	1610
Lane Gip Cap(c), ven/ii	0.40	0.00	0.04	4409	2940	0.17
V/C Ratio(X)	0.40	0.20	0.01	0.30	0.17	0.17
Avail Cap(c_a), ven/n	445	396	684	4409	2940	1610
HCM Platoon Ratio	1.00	1.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	47.2	46.9	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	5.4	2.6	0.0	0.2	0.1	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%) veh	/In0.9	0.4	0.0	0.1	0.0	0.1
Unsig Movement Delay	s/veh					
InGrn Delay(d) s/yeb	52.6	10 5	0.0	02	01	02
LinGrp Los	JZ.0	49.0 D	0.0 A	0.2	0.1	0.2
		U	А	A 500	750	A
Approach vol, ven/h	4/			1528	/56	
Approach Delay, s/veh	51.5			0.2	0.2	
Approach LOS	D			A	Α	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc)	s	91.4		8.6		91.4
Change Period (V+Rc)	\$	5.0		5.0		5.0
May Green Sotting (Cmr		65.0		25.0		65.0
Max O Clear Time (GMa	ax_{j}, S	00.0		20.0		00.0
wax Q Clear Time (g_c+	·11), S	2.0		3.1		2.0
Green Ext Time (p_c), s		16.4		0.1		5.3
Intersection Summary						
HCM 6th Ctrl Delay			1.2			
HCM 6th LOS			А			

0.3

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4		7	4 4 %		ľ	4 4 %	
Traffic Vol, veh/h	5	1	15	5	1	5	20	1542	5	5	756	5
Future Vol, veh/h	5	1	15	5	1	5	20	1542	5	5	756	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	50	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
M∨mt Flow	5	1	16	5	1	5	21	1623	5	5	796	5

Major/Minor	Minor2		ľ	Minor1			Major1		Ν	/lajor2				
Conflicting Flow All	1501	2479	401	1997	2479	814	801	0	0	1628	0	0		
Stage 1	809	809	-	1668	1668	-	-	-	-	-	-	-		
Stage 2	692	1670	-	329	811	-	-	-	-	-	-	-		
Critical Hdwy	6.44	6.54	7.14	6.44	6.54	7.14	5.34	-	-	5.34	-	-		
Critical Hdwy Stg 1	7.34	5.54	-	7.34	5.54	-	-	-	-	-	-	-		
Critical Hdwy Stg 2	6.74	5.54	-	6.74	5.54	-	-	-	-	-	-	-		
Follow-up Hdwy	3.82	4.02	3.92	3.82	4.02	3.92	3.12	-	-	3.12	-	-		
Pot Cap-1 Maneuver	*438	*66	*756	*177	*66	*575	939	-	-	*722	-	-		
Stage 1	*752	*722	-	*590	*561	-	-	-	-	-	-	-		
Stage 2	*590	*561	-	*776	*720	-	-	-	-	-	-	-		
Platoon blocked, %	1	1	1	1	1	1	1	-	-	1	-	-		
Mov Cap-1 Maneuver	*419	*64	*756	*167	*64	*575	939	-	-	*722	-	-		
Mov Cap-2 Maneuver	*419	*64	-	*167	*64	-	-	-	-	-	-	-		
Stage 1	*735	*717	-	*577	*548	-	-	-	-	-	-	-		
Stage 2	*570	*548	-	*753	*715	-	-	-	-	-	-	-		
Approach	EB			WB			NB			SB				
HCM Control Delay, s	3 13.6			23.8			0.1			0.1				
HCM LOS	В			С										
Minor Lane/Major Mv	mt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR					
Capacity (veh/h)		939	-	-	443	203	* 722	-	-					
HCM Lane V/C Ratio		0.022	-	-	0.05	0.057	0.007	-	-					
HCM Control Delay (s	6)	8.9	-	-	13.6	23.8	10	-	-					
HCM Lane LOS	,	А	-	-	В	С	В	-	-					
HCM 95th %tile Q(vel	h)	0.1	-	-	0.2	0.2	0	-	-					
Notes														
~: Volume exceeds ca	apacity	\$: De	lav exc	eeds 30)0s	+: Com	putation	Not De	fined	*: All r	naior volu	ume in r	latoon	
	ap a only	φ. Β0					paration							

HCM 6th Signalized Intersection Summary 4: Washington St & Boyer's Driveway/E 73rd Ave

	٠	→	\mathbf{r}	*	+	*	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	Þ		7	Þ		۲	^	1	1	** 12	
Traffic Volume (veh/h)	17	0	11	45	0	140	34	1405	70	20	725	31
Future Volume (veh/h)	17	0	11	45	0	140	34	1405	70	20	725	31
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	18	0	12	47	0	147	36	1479	74	21	763	33
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	115	0	196	236	0	196	601	2758	1230	330	3895	168
Arrive On Green	0.12	0.00	0.12	0.12	0.00	0.12	1.00	1.00	1.00	1.00	1.00	1.00
Sat Flow, veh/h	1241	0	1585	1402	0	1585	682	3554	1585	333	5019	216
Grp Volume(v), veh/h	18	0	12	47	0	147	36	1479	74	21	517	279
Grp Sat Flow(s),veh/h/ln	1241	0	1585	1402	0	1585	682	1777	1585	333	1702	1831
Q Serve(g_s), s	1.4	0.0	0.7	3.1	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	10.4	0.0	0.7	3.7	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.12
Lane Grp Cap(c), veh/h	115	0	196	236	0	196	601	2758	1230	330	2642	1421
V/C Ratio(X)	0.16	0.00	0.06	0.20	0.00	0.75	0.06	0.54	0.06	0.06	0.20	0.20
Avail Cap(c_a), veh/h	271	0	396	413	0	396	601	2758	1230	330	2642	1421
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	47.3	0.0	38.7	40.3	0.0	42.3	0.0	0.0	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	0.6	0.0	0.1	0.4	0.0	5.6	0.2	0.8	0.1	0.4	0.2	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.5	0.0	0.3	1.1	0.0	3.8	0.0	0.3	0.0	0.0	0.1	0.1
Unsig. Movement Delay, s/veh									• •			
LnGrp Delay(d),s/veh	47.9	0.0	38.8	40.7	0.0	47.9	0.2	0.8	0.1	0.4	0.2	0.3
LnGrp LOS	D	A	D	D	A	D	A	A	A	A	A	<u> </u>
Approach Vol, veh/h		30			194			1589			817	
Approach Delay, s/veh		44.3			46.2			0.7			0.2	
Approach LOS		D			D			A			A	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		82.6		17.4		82.6		17.4				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		65.0		25.0		65.0		25.0				
Max Q Clear Time (g_c+l1), s		2.0		12.4		2.0		11.0				
Green Ext Time (p_c), s		17.9		0.0		6.3		0.8				
Intersection Summary												
HCM 6th Ctrl Delay			4.4									
HCM 6th LOS			А									

	•	•	Ť	1	4	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	5	1	**		5	111	
Traffic Volume (veh/h)	35	40	1464	20	25	763	
Future Volume (veh/h)	35	40	1464	20	25	763	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	h No		No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	37	42	1541	21	26	803	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	79	70	4441	61	354	4369	
Arrive On Green	0.04	0.04	1.00	1.00	1.00	1.00	
Sat Flow, veh/h	1781	1585	5359	71	330	5274	
Grp Volume(v), veh/h	37	42	1011	551	26	803	
Grp Sat Flow(s),veh/h/li	n1781	1585	1702	1858	330	1702	
Q Serve(g_s), s	2.0	2.6	0.0	0.0	0.0	0.0	
Cycle Q Clear(g_c), s	2.0	2.6	0.0	0.0	0.0	0.0	
Prop In Lane	1.00	1.00		0.04	1.00		
Lane Grp Cap(c), veh/h	79	70	2912	1589	354	4369	
V/C Ratio(X)	0.47	0.60	0.35	0.35	0.07	0.18	
Avail Cap(c a), veh/h	445	396	2912	1589	354	4369	
HCM Platoon Ratio	1.00	1.00	2.00	2.00	2.00	2.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/vel	h 46.6	46.9	0.0	0.0	0.0	0.0	
Incr Delay (d2), s/veh	4.2	7.8	0.3	0.6	0.4	0.1	
Initial Q Delay(d3),s/vel	n 0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),vel	n/In1.0	1.2	0.1	0.3	0.0	0.0	
Unsig. Movement Delay	/, s/veh	1					
LnGrp Delay(d),s/veh	50.9	54.7	0.3	0.6	0.4	0.1	
LnGrp LOS	D	D	А	А	А	А	
Approach Vol. veh/h	79		1562			829	
Approach Delay, s/veh	52.9		0.4			0.1	
Approach LOS	D		A			A	
Timer - Assigned Phe		2				6	8
Phe Duration (C+V+Da)		2 00				0 0	9.4
Change Deried (V, De)	, s	90.0 E 0				90.0 E 0	5.0
Max Groop Sotting (Cm	5 101/1 C	0.U				0.0 6E 0	25.0
Max O Close Time (c. c	(ax), S	0.00				0.00	20.0
Green Ext Time (g_C	+11), S	2.U 15.6				2.U 7 1	4.0
Green Ext Time (p_C), s	>	15.0				7.1	0.2
Intersection Summary							
HCM 6th Ctrl Delay			2.0				
HCM 6th LOS			Α				

HCM 6th Signalized Intersection Summary 6: Washington St & E 70th Ave

* + > < + * * † * > + <

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	17	**	1	5	**	1	5	* 1		5	**	1
Traffic Volume (veh/h)	577	655	90	65	440	268	445	659	165	213	340	355
Future Volume (veh/h)	577	655	90	65	440	268	445	659	165	213	340	355
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac	:h	No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	607	689	0	68	463	0	468	694	0	224	358	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	622	1439		88	1045		500	838		288	660	
Arrive On Green	0.18	0.40	0.00	0.05	0.29	0.00	0.17	0.24	0.00	0.17	0.31	0.00
Sat Flow, veh/h	3456	3554	1585	1781	3554	1585	1781	3647	0	1781	3554	1585
Grp Volume(v). veh/h	607	689	0	68	463	0	468	694	0	224	358	0
Grp Sat Flow(s).veh/h/lr	11728	1777	1585	1781	1777	1585	1781	1777	0	1781	1777	1585
Q Serve(a s), s	17.5	14.3	0.0	3.8	10.6	0.0	17.0	18.5	0.0	10.0	8.4	0.0
Cvcle Q Clear(q c), s	17.5	14.3	0.0	3.8	10.6	0.0	17.0	18.5	0.0	10.0	8.4	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.00	1.00		1.00
Lane Grp Cap(c), veh/h	622	1439		88	1045		500	838		288	660	
V/C Ratio(X)	0.98	0.48		0.77	0.44		0.94	0.83		0.78	0.54	
Avail Cap(c a), veh/h	622	1439		178	1045		500	1066		288	888	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.67	1.67	1.67
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/vel	n 40.8	22.0	0.0	47.0	28.6	0.0	28.3	36.3	0.0	28.9	31.0	0.0
Incr Delay (d2), s/veh	29.9	1.1	0.0	13.4	1.4	0.0	25.3	4.4	0.0	12.7	0.7	0.0
Initial Q Delay(d3),s/veh	n 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh	n/In9.7	5.9	0.0	2.0	4.5	0.0	6.2	8.2	0.0	4.9	3.3	0.0
Unsig. Movement Delay	, s/veh											
LnGrp Delay(d),s/veh	70.7	23.1	0.0	60.4	30.0	0.0	53.5	40.7	0.0	41.5	31.7	0.0
LnGrp LOS	Е	С		Е	С		D	D		D	С	
Approach Vol, veh/h		1296			531			1162			582	
Approach Delay, s/veh		45.4			33.9			45.9			35.5	
Approach LOS		D			С			D			D	
Timer - Assigned Phy	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc)	\$5.0	28.6	99	46.5	20.0	23.6	21.0	35.4				
Change Period (V+Pe)	ς 5 Π	20.0 5 0	5.0	6.0	5.0	20.0 5 0	5.0	6 N				
Max Green Setting (Cm	3 0.0 a1/0 @	30.0	10.0	20.0	15.0	25.0	16.0	23.0				
Max O Clear Time (g. c.	⊥1112)Ω	20.5	5.8	16.3	19.0 19.0	10 /	19.0	12.6				
Green Ext Time (n. o)	· 11/4,00	20.0	0.0	3.6	0.0	1 8	0.0	2.0				
	0.0	0.0	0.0	0.0	0.0	1.0	0.0	2.0				
Intersection Summary			10.0									
HCM 6th Ctrl Delay			42.2									
HCM 6th LOS			D									

Notes

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection

Int Delay, s/veh	0.1							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations		1		***	***			
Traffic Vol, veh/h	0	27	0	1509	781	0		
Future Vol, veh/h	0	27	0	1509	781	0		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	None	-	None	-	None		
Storage Length	-	0	-	-	-	-		
Veh in Median Storage	,# 0	-	-	0	0	-		
Grade, %	0	-	-	0	0	-		
Peak Hour Factor	95	95	95	95	95	95		
Heavy Vehicles, %	2	2	2	2	2	2		
M∨mt Flow	0	28	0	1588	822	0		

Major/Minor	Minor2	Ν	lajor1	Major	2		
Conflicting Flow All	-	411	-	0	- 0		
Stage 1	-	-	-	-			
Stage 2	-	-	-	-			
Critical Hdwy	-	7.14	-	-			
Critical Hdwy Stg 1	-	-	-	-			
Critical Hdwy Stg 2	-	-	-	-			
Follow-up Hdwy	-	3.92	-	-			
Pot Cap-1 Maneuver	0	*751	0	-	- 0		
Stage 1	0	-	0	-	- 0		
Stage 2	0	-	0	-	- 0		
Platoon blocked, %		1		-	-		
Mov Cap-1 Maneuver	-	*751	-	-			
Mov Cap-2 Maneuver	-	-	-	-			
Stage 1	-	-	-	-			
Stage 2	-	-	-	-			
Approach	FR		NR	2	2		
HCM Control Dolay	10		0	0	<u> </u>		
			0		U		
	D						
Minor Lane/Major Mvr	nt	NBT E	BLn1	SBT			
Capacity (veh/h)		-	751	-			
HCM Lane V/C Ratio		- (0.038	-			
HCM Control Delay (s)	-	10	-			
HCM Lane LOS		-	В	-			
HCM 95th %tile Q(veh	ı)	-	0.1	-			
Notes							
~: Volume exceeds ca	pacity	\$: Del	ay exc	eeds 300s	+: Comp	utation Not Defined	*: All major volume in platoon

	٠	-	*	1	-	*	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	36	19	17	171	11	112	7	306	56	95	1291	21
v/c Ratio	0.15	0.06	0.05	0.70	0.03	0.30	0.03	0.14	0.05	0.12	0.50	0.02
Control Delay	33.8	31.7	0.2	53.7	31.0	8.4	10.9	9.3	1.8	5.3	7.4	2.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	33.8	31.7	0.2	53.7	31.0	8.4	10.9	9.3	1.8	5.3	7.4	2.2
Queue Length 50th (ft)	20	10	0	104	6	0	2	41	0	15	160	0
Queue Length 95th (ft)	44	28	0	162	20	42	9	73	12	38	265	8
Internal Link Dist (ft)		268			1785			876			418	
Turn Bay Length (ft)	75			125		125	180			135		
Base Capacity (vph)	349	465	452	347	465	479	246	2221	1021	763	2566	1153
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.10	0.04	0.04	0.49	0.02	0.23	0.03	0.14	0.05	0.12	0.50	0.02
Intersection Summary												

	٦	\mathbf{r}	1	Ť	Ŧ
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Group Flow (vph)	13	12	36	412	1705
v/c Ratio	0.12	0.11	0.16	0.09	0.36
Control Delay	45.9	24.0	3.2	0.9	1.3
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	45.9	24.0	3.2	0.9	1.3
Queue Length 50th (ft)	8	0	0	0	0
Queue Length 95th (ft)	27	18	11	18	90
Internal Link Dist (ft)	1107			1070	450
Turn Bay Length (ft)	50		50		
Base Capacity (vph)	442	404	221	4734	4711
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.03	0.03	0.16	0.09	0.36
Intersection Summary					

	-	•	-	Ť	1	6	ţ
Lane Group	EBT	WBL	WBT	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	1	19	28	458	28	33	1563
v/c Ratio	0.01	0.17	0.05	0.14	0.02	0.04	0.34
Control Delay	0.0	46.6	0.2	1.4	0.7	1.7	1.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	0.0	46.6	0.2	1.4	0.7	1.7	1.8
Queue Length 50th (ft)	0	12	0	21	0	3	62
Queue Length 95th (ft)	0	34	0	34	4	8	89
Internal Link Dist (ft)	101		1179	750			300
Turn Bay Length (ft)						175	
Base Capacity (vph)	428	396	725	3159	1416	811	4539
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.00	0.05	0.04	0.14	0.02	0.04	0.34
Intersection Summary							

	1	•	Ť	1	ŧ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	11	28	482	29	1557
v/c Ratio	0.10	0.20	0.11	0.04	0.34
Control Delay	45.4	19.3	1.2	1.5	1.6
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	45.4	19.3	1.2	1.5	1.6
Queue Length 50th (ft)	7	0	13	2	57
Queue Length 95th (ft)	24	27	21	7	81
Internal Link Dist (ft)	928		170		420
Turn Bay Length (ft)	75			265	
Base Capacity (vph)	442	432	4539	781	4569
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.02	0.06	0.11	0.04	0.34
Intersection Summary					

	٨	+	*	4	+	*	1	t	1	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	289	342	280	148	356	83	87	168	460	607	502	
v/c Ratio	0.68	0.29	0.40	0.68	0.30	0.13	0.39	0.36	0.89	0.60	0.65	
Control Delay	51.6	26.4	6.2	59.6	26.5	0.4	25.8	33.5	47.2	33.7	8.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	51.6	26.4	6.2	59.6	26.5	0.4	25.8	33.5	47.2	33.7	8.3	
Queue Length 50th (ft)	90	86	8	89	90	0	36	43	243	183	21	
Queue Length 95th (ft)	#164	130	69	#203	134	0	60	69	#340	217	106	
Internal Link Dist (ft)		216			267			1225		310		
Turn Bay Length (ft)	160			215		215	280		215			
Base Capacity (vph)	422	1191	707	217	1189	654	226	709	514	1167	829	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.68	0.29	0.40	0.68	0.30	0.13	0.38	0.24	0.89	0.52	0.61	
Intersection Summary												

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٨	→	\mathbf{r}	4	+	×.	1	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	28	4	5	66	1	95	8	1058	104	109	482	36
v/c Ratio	0.20	0.02	0.02	0.47	0.01	0.39	0.01	0.43	0.09	0.25	0.16	0.03
Control Delay	42.9	38.2	0.2	52.3	38.0	13.3	6.6	8.0	1.7	3.9	2.5	1.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	42.9	38.2	0.2	52.3	38.0	13.3	6.6	8.0	1.7	3.9	2.5	1.0
Queue Length 50th (ft)	17	2	0	40	1	0	1	142	0	11	28	0
Queue Length 95th (ft)	42	12	0	80	6	45	7	222	19	27	51	7
Internal Link Dist (ft)		268			1785			876			418	
Turn Bay Length (ft)	75			125		125	180			135		
Base Capacity (vph)	352	465	452	351	465	467	624	2485	1142	436	2940	1321
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.08	0.01	0.01	0.19	0.00	0.20	0.01	0.43	0.09	0.25	0.16	0.03
Intersection Summary												

	٠	7	1	Ť	Ŧ
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Group Flow (vph)	28	13	2	1229	601
v/c Ratio	0.22	0.10	0.00	0.27	0.13
Control Delay	47.3	22.2	2.0	1.6	1.4
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	47.3	22.2	2.0	1.6	1.4
Queue Length 50th (ft)	17	0	0	45	19
Queue Length 95th (ft)	44	19	1	66	30
Internal Link Dist (ft)	1107			1070	450
Turn Bay Length (ft)	50		50		
Base Capacity (vph)	442	405	687	4533	4533
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.06	0.03	0.00	0.27	0.13
Intersection Summary					

	1	-	1	1	1	+
Lane Group	WBL	WBT	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	36	123	1221	59	16	642
v/c Ratio	0.30	0.56	0.42	0.05	0.05	0.16
Control Delay	47.8	24.9	3.4	0.8	2.8	2.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	47.8	24.9	3.4	0.8	2.8	2.3
Queue Length 50th (ft)	22	20	81	0	1	22
Queue Length 95th (ft)	51	73	147	8	7	41
Internal Link Dist (ft)		1179	750			300
Turn Bay Length (ft)					175	
Base Capacity (vph)	352	463	2879	1299	325	4138
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.10	0.27	0.42	0.05	0.05	0.16
Intersection Summary						

	1	*	Ť	1	ţ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	32	36	1259	22	644
v/c Ratio	0.25	0.24	0.29	0.07	0.15
Control Delay	47.7	18.3	2.0	2.3	1.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	47.7	18.3	2.0	2.3	1.7
Queue Length 50th (ft)	20	0	47	2	21
Queue Length 95th (ft)	48	30	69	7	32
Internal Link Dist (ft)	928		170		420
Turn Bay Length (ft)	75			265	
Base Capacity (vph)	442	422	4353	332	4361
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.07	0.09	0.29	0.07	0.15
Intersection Summary					

	٠	→	~	-	-	*	1	Ť	1	Ļ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	494	564	79	57	380	227	383	701	183	285	302	
v/c Ratio	0.80	0.42	0.12	0.39	0.40	0.38	0.84	0.79	0.73	0.40	0.54	
Control Delay	50.5	26.4	1.4	50.8	32.4	6.3	40.6	39.6	37.8	35.6	7.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	50.5	26.4	1.4	50.8	32.4	6.3	40.6	39.6	37.8	35.6	7.6	
Queue Length 50th (ft)	152	145	0	35	108	0	182	208	76	83	0	
Queue Length 95th (ft)	#252	214	9	74	154	58	#270	260	#127	115	65	
Internal Link Dist (ft)		216			267			1225		310		
Turn Bay Length (ft)	160			215		215	280		215			
Base Capacity (vph)	619	1337	679	177	952	592	456	1051	256	884	622	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.80	0.42	0.12	0.32	0.40	0.38	0.84	0.67	0.71	0.32	0.49	
Intersection Summary												

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. #

	٨	+	1	1	-	*	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	36	19	18	176	11	115	8	316	58	98	1332	21
v/c Ratio	0.14	0.06	0.05	0.71	0.03	0.31	0.03	0.14	0.06	0.13	0.52	0.02
Control Delay	33.4	31.3	0.3	53.6	30.7	8.2	11.1	9.4	1.9	5.5	7.8	2.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	33.4	31.3	0.3	53.6	30.7	8.2	11.1	9.4	1.9	5.5	7.8	2.4
Queue Length 50th (ft)	20	10	0	107	6	0	2	43	0	16	171	0
Queue Length 95th (ft)	44	28	0	165	20	43	10	75	13	39	283	8
Internal Link Dist (ft)		268			1785			876			418	
Turn Bay Length (ft)	75			125		125	180			135		
Base Capacity (vph)	349	465	452	347	465	482	230	2210	1017	754	2552	1148
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.10	0.04	0.04	0.51	0.02	0.24	0.03	0.14	0.06	0.13	0.52	0.02
Intersection Summary												

	٭	7	1	1	+
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Group Flow (vph)	16	16	38	429	1758
v/c Ratio	0.14	0.14	0.19	0.09	0.39
Control Delay	46.3	22.5	4.1	1.2	1.8
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	46.3	22.5	4.1	1.2	1.8
Queue Length 50th (ft)	10	0	3	12	69
Queue Length 95th (ft)	31	21	12	19	96
Internal Link Dist (ft)	1107			1070	450
Turn Bay Length (ft)	50		50		
Base Capacity (vph)	442	407	199	4563	4542
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.04	0.04	0.19	0.09	0.39
Intersection Summary					

	-	-	1	1	1	ŧ
Lane Group	WBL	WBT	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	21	29	474	31	35	1611
v/c Ratio	0.19	0.06	0.15	0.02	0.04	0.36
Control Delay	47.0	0.2	1.5	0.7	1.8	1.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	47.0	0.2	1.5	0.7	1.8	1.9
Queue Length 50th (ft)	13	0	22	0	3	65
Queue Length 95th (ft)	36	0	36	4	9	94
Internal Link Dist (ft)		1179	750			300
Turn Bay Length (ft)					175	
Base Capacity (vph)	388	715	3156	1415	799	4534
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.05	0.04	0.15	0.02	0.04	0.36
Intersection Summary						

	1	•	1	1	ŧ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	12	29	498	29	1605
v/c Ratio	0.11	0.20	0.11	0.04	0.35
Control Delay	45.6	18.9	1.2	1.6	1.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	45.6	18.9	1.2	1.6	1.7
Queue Length 50th (ft)	7	0	13	2	60
Queue Length 95th (ft)	25	27	21	7	84
Internal Link Dist (ft)	928		170		420
Turn Bay Length (ft)	75			265	
Base Capacity (vph)	442	433	4538	770	4568
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.03	0.07	0.11	0.04	0.35
Intersection Summary					

	٠	-	7	-	-	*	1	1	1	Ŧ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	300	353	289	153	368	85	89	172	474	626	516	
v/c Ratio	0.66	0.30	0.41	0.66	0.31	0.13	0.40	0.35	0.86	0.61	0.66	
Control Delay	49.6	26.8	6.8	56.8	26.9	0.4	25.6	33.3	41.8	33.5	9.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	49.6	26.8	6.8	56.8	26.9	0.4	25.6	33.3	41.8	33.5	9.4	
Queue Length 50th (ft)	92	91	12	91	95	0	36	44	243	186	33	
Queue Length 95th (ft)	#161	133	75	#201	138	0	62	70	#327	225	128	
Internal Link Dist (ft)		216			267			1225		310		
Turn Bay Length (ft)	160			215		215	280		215			
Base Capacity (vph)	452	1181	703	232	1177	649	228	708	548	1167	822	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.66	0.30	0.41	0.66	0.31	0.13	0.39	0.24	0.86	0.54	0.63	
Interpretion Cummon												

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٠	+	1	4	+	•	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	29	4	5	68	2	98	8	1089	107	113	500	36
v/c Ratio	0.20	0.02	0.02	0.48	0.01	0.39	0.01	0.45	0.10	0.28	0.18	0.03
Control Delay	42.8	38.0	0.2	52.3	38.0	13.1	6.8	8.7	1.7	4.3	2.8	1.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	42.8	38.0	0.2	52.3	38.0	13.1	6.8	8.7	1.7	4.3	2.8	1.0
Queue Length 50th (ft)	17	2	0	42	1	0	2	149	0	12	30	0
Queue Length 95th (ft)	43	12	0	82	8	45	7	234	19	29	54	7
Internal Link Dist (ft)		268			1785			876			418	
Turn Bay Length (ft)	75			125		125	180			135		
Base Capacity (vph)	352	465	452	351	465	469	593	2401	1108	410	2824	1270
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.08	0.01	0.01	0.19	0.00	0.21	0.01	0.45	0.10	0.28	0.18	0.03
Intersection Summary												

	٠	7	1	t	+
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Group Flow (vph)	31	16	5	1266	625
v/c Ratio	0.24	0.12	0.01	0.28	0.14
Control Delay	47.6	21.4	1.8	1.7	1.4
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	47.6	21.4	1.8	1.7	1.4
Queue Length 50th (ft)	19	0	0	47	20
Queue Length 95th (ft)	47	20	2	70	31
Internal Link Dist (ft)	1107			1070	450
Turn Bay Length (ft)	50		50		
Base Capacity (vph)	442	407	670	4527	4523
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.07	0.04	0.01	0.28	0.14
Intersection Summary					

	•	+	t	1	1	ŧ.
Lane Group	WBL	WBT	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	38	126	1258	61	17	663
v/c Ratio	0.30	0.58	0.44	0.05	0.06	0.16
Control Delay	47.3	27.8	3.6	0.8	3.0	2.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	47.3	27.8	3.6	0.8	3.0	2.4
Queue Length 50th (ft)	23	26	87	0	2	23
Queue Length 95th (ft)	53	80	160	8	8	45
Internal Link Dist (ft)		1179	750			300
Turn Bay Length (ft)					175	
Base Capacity (vph)	352	458	2867	1294	309	4119
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.11	0.28	0.44	0.05	0.06	0.16
Intersection Summary						

	1	*	Ť	1	Ŧ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	33	37	1297	23	663
v/c Ratio	0.25	0.25	0.30	0.07	0.15
Control Delay	47.7	18.1	2.1	2.5	1.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	47.7	18.1	2.1	2.5	1.7
Queue Length 50th (ft)	20	0	50	2	21
Queue Length 95th (ft)	50	30	73	7	34
Internal Link Dist (ft)	928		170		420
Turn Bay Length (ft)	75			265	
Base Capacity (vph)	442	423	4349	317	4357
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.07	0.09	0.30	0.07	0.15
Intersection Summary					

	٠	-	7	*	-	*	1	1	1	Ŧ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	511	526	81	59	389	237	395	721	189	295	311	
v/c Ratio	0.82	0.40	0.12	0.40	0.42	0.40	0.86	0.79	0.75	0.40	0.54	
Control Delay	52.3	26.5	1.6	51.1	33.0	6.4	42.7	39.5	40.0	35.2	7.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	52.3	26.5	1.6	51.1	33.0	6.4	42.7	39.5	40.0	35.2	7.5	
Queue Length 50th (ft)	160	136	0	36	112	0	184	212	77	84	0	
Queue Length 95th (ft)	#265	198	10	76	157	59	#294	268	#144	120	66	
Internal Link Dist (ft)		216			267			1225		310		
Turn Bay Length (ft)	160			215		215	280		215			
Base Capacity (vph)	621	1313	669	177	928	590	458	1051	255	884	629	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.82	0.40	0.12	0.33	0.42	0.40	0.86	0.69	0.74	0.33	0.49	
Internetien Originalis												

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٨	→	7	4	+	•	1	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	36	19	18	176	11	115	8	329	58	98	1339	21
v/c Ratio	0.14	0.06	0.05	0.71	0.03	0.31	0.03	0.15	0.06	0.13	0.52	0.02
Control Delay	33.4	31.3	0.3	53.6	30.7	8.2	11.1	9.5	1.9	5.5	7.8	2.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	33.4	31.3	0.3	53.6	30.7	8.2	11.1	9.5	1.9	5.5	7.8	2.4
Queue Length 50th (ft)	20	10	0	107	6	0	2	45	0	16	172	0
Queue Length 95th (ft)	44	28	0	165	20	43	10	78	13	39	286	8
Internal Link Dist (ft)		268			1785			876			418	
Turn Bay Length (ft)	75			125		125	180			135		
Base Capacity (vph)	349	465	452	347	465	482	229	2210	1017	745	2552	1148
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.10	0.04	0.04	0.51	0.02	0.24	0.03	0.15	0.06	0.13	0.52	0.02
Intersection Summary												

	٠	7	1	Ť	Ŧ
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Group Flow (vph)	16	16	38	443	1765
v/c Ratio	0.14	0.14	0.19	0.10	0.39
Control Delay	46.3	22.5	4.1	1.2	1.8
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	46.3	22.5	4.1	1.2	1.8
Queue Length 50th (ft)	10	0	3	12	70
Queue Length 95th (ft)	31	21	13	20	97
Internal Link Dist (ft)	1107			1070	450
Turn Bay Length (ft)	50		50		
Base Capacity (vph)	442	407	197	4563	4542
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.04	0.04	0.19	0.10	0.39
Intersection Summary					

Queues 4: Washington St & Boyer's Driveway/E 73rd Ave

	≯		1	-	1	t	1	1	↓ –	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	43	89	21	29	47	444	31	35	1618	
v/c Ratio	0.36	0.50	0.18	0.05	0.22	0.15	0.02	0.05	0.38	
Control Delay	49.9	33.3	44.4	0.2	5.5	2.2	1.0	2.5	2.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	49.9	33.3	44.4	0.2	5.5	2.2	1.0	2.5	2.8	
Queue Length 50th (ft)	26	28	13	0	5	23	0	3	75	
Queue Length 95th (ft)	59	73	35	0	21	43	6	11	121	
Internal Link Dist (ft)		101		1179		750			300	
Turn Bay Length (ft)	40				60			175		
Base Capacity (vph)	343	428	325	735	214	2982	1338	776	4261	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.13	0.21	0.06	0.04	0.22	0.15	0.02	0.05	0.38	
Intersection Summary										

	1	•	Ť	1	ŧ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	12	29	516	29	1637
v/c Ratio	0.11	0.20	0.11	0.04	0.36
Control Delay	45.6	18.9	1.2	1.6	1.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	45.6	18.9	1.2	1.6	1.7
Queue Length 50th (ft)	7	0	14	2	62
Queue Length 95th (ft)	25	27	22	7	87
Internal Link Dist (ft)	928		170		420
Turn Bay Length (ft)	75			265	
Base Capacity (vph)	442	433	4538	754	4568
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.03	0.07	0.11	0.04	0.36
Intersection Summary					

	≯	+	*	4	←	*	1	t	1	Ļ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	305	353	289	153	368	87	89	182	478	644	525	
v/c Ratio	0.67	0.30	0.41	0.67	0.32	0.13	0.39	0.36	0.87	0.62	0.67	
Control Delay	50.1	26.9	7.1	57.3	27.1	0.4	25.4	34.1	42.0	33.5	9.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	50.1	26.9	7.1	57.3	27.1	0.4	25.4	34.1	42.0	33.5	9.9	
Queue Length 50th (ft)	94	92	14	91	96	0	36	47	244	191	37	
Queue Length 95th (ft)	#164	133	78	#201	138	0	62	75	#338	232	136	
Internal Link Dist (ft)		216			267			1225		310		
Turn Bay Length (ft)	160			215		215	280		215			
Base Capacity (vph)	452	1173	697	230	1165	645	229	708	550	1167	822	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.67	0.30	0.41	0.67	0.32	0.13	0.39	0.26	0.87	0.55	0.64	
Intersection Summary												

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٨	-	\mathbf{r}	1	+	×	1	t	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	29	4	5	68	2	98	8	1097	107	113	512	36
v/c Ratio	0.20	0.02	0.02	0.48	0.01	0.39	0.01	0.46	0.10	0.28	0.18	0.03
Control Delay	42.8	38.0	0.2	52.3	38.0	13.1	6.8	8.8	1.7	4.3	2.8	1.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	42.8	38.0	0.2	52.3	38.0	13.1	6.8	8.8	1.7	4.3	2.8	1.0
Queue Length 50th (ft)	17	2	0	42	1	0	2	151	0	12	31	0
Queue Length 95th (ft)	43	12	0	82	8	45	7	235	19	29	55	7
Internal Link Dist (ft)		268			1785			876			418	
Turn Bay Length (ft)	75			125		125	180			135		
Base Capacity (vph)	352	465	452	351	465	469	584	2401	1108	408	2824	1270
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.08	0.01	0.01	0.19	0.00	0.21	0.01	0.46	0.10	0.28	0.18	0.03
Intersection Summary												

	٠	7	1	1	Ŧ
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Group Flow (vph)	31	16	5	1273	636
v/c Ratio	0.24	0.12	0.01	0.28	0.14
Control Delay	47.6	21.4	1.8	1.7	1.4
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	47.6	21.4	1.8	1.7	1.4
Queue Length 50th (ft)	19	0	0	48	20
Queue Length 95th (ft)	47	20	2	70	32
Internal Link Dist (ft)	1107			1070	450
Turn Bay Length (ft)	50		50		
Base Capacity (vph)	442	407	661	4527	4523
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.07	0.04	0.01	0.28	0.14
Intersection Summary					
Queues 4: Washington St & Boyer's Driveway/E 73rd Ave

	≁	-	1	←	1	1	1	1	+	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	18	40	38	126	36	1247	61	17	675	
v/c Ratio	0.20	0.10	0.31	0.58	0.06	0.43	0.05	0.05	0.16	
Control Delay	45.8	0.4	48.1	27.2	2.7	3.6	0.8	2.9	2.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	45.8	0.4	48.1	27.2	2.7	3.6	0.8	2.9	2.3	
Queue Length 50th (ft)	11	0	23	25	3	86	0	2	23	
Queue Length 95th (ft)	32	0	53	78	12	157	8	7	44	
Internal Link Dist (ft)		101		1179		750			300	
Turn Bay Length (ft)	40				60			175		
Base Capacity (vph)	249	623	340	459	579	2868	1294	313	4096	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.07	0.06	0.11	0.27	0.06	0.43	0.05	0.05	0.16	
Intersection Summary										

	1	*	Ť	1	Ŧ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	33	37	1322	23	682
v/c Ratio	0.25	0.25	0.30	0.07	0.16
Control Delay	47.7	18.1	2.1	2.5	1.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	47.7	18.1	2.1	2.5	1.7
Queue Length 50th (ft)	20	0	51	2	22
Queue Length 95th (ft)	50	30	75	7	35
Internal Link Dist (ft)	928		170		420
Turn Bay Length (ft)	75			265	
Base Capacity (vph)	442	423	4349	308	4357
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.07	0.09	0.30	0.07	0.16
Intersection Summary					

	٨	+	7	4	+	•	•	Ť	1	Ļ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	518	526	81	59	389	240	395	735	193	305	316	
v/c Ratio	0.83	0.40	0.12	0.40	0.43	0.41	0.86	0.80	0.77	0.41	0.54	
Control Delay	53.0	26.8	1.6	51.1	33.3	6.5	42.7	39.7	42.2	35.1	7.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	53.0	26.8	1.6	51.1	33.3	6.5	42.7	39.7	42.2	35.1	7.4	
Queue Length 50th (ft)	164	137	0	36	112	0	183	217	78	87	0	
Queue Length 95th (ft)	#271	198	10	76	157	60	#298	275	#154	123	66	
Internal Link Dist (ft)		216			267			1225		310		
Turn Bay Length (ft)	160			215		215	280		215			
Base Capacity (vph)	623	1301	665	177	914	587	458	1052	252	884	632	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.83	0.40	0.12	0.33	0.43	0.41	0.86	0.70	0.77	0.35	0.50	
Intersection Summary												

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	≯	→	7	1	+	*	1	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	37	21	21	205	11	137	11	374	68	116	1574	21
v/c Ratio	0.14	0.06	0.06	0.76	0.03	0.33	0.07	0.18	0.07	0.17	0.63	0.02
Control Delay	32.2	30.6	0.3	55.8	29.8	7.7	12.9	10.8	2.6	6.1	10.0	2.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	32.2	30.6	0.3	55.8	29.8	7.7	12.9	10.8	2.6	6.1	10.0	2.4
Queue Length 50th (ft)	20	11	0	124	6	0	3	55	0	21	249	0
Queue Length 95th (ft)	44	29	0	192	20	46	13	88	17	45	375	8
Internal Link Dist (ft)		268			1785			876			418	
Turn Bay Length (ft)	75			125		125	180			135		
Base Capacity (vph)	349	465	452	346	465	498	151	2067	956	704	2497	1123
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.11	0.05	0.05	0.59	0.02	0.28	0.07	0.18	0.07	0.16	0.63	0.02
Intersection Summary												

	٠	\mathbf{r}	1	t	Ŧ
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Group Flow (vph)	16	16	38	505	2093
v/c Ratio	0.14	0.14	0.29	0.11	0.46
Control Delay	46.3	23.9	7.9	1.2	2.1
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	46.3	23.9	7.9	1.2	2.1
Queue Length 50th (ft)	10	1	4	14	93
Queue Length 95th (ft)	31	21	18	23	127
Internal Link Dist (ft)	1107			1070	450
Turn Bay Length (ft)	50		50		
Base Capacity (vph)	442	407	133	4563	4546
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.04	0.04	0.29	0.11	0.46
Intersection Summary					

	1	-	1	1	1	Ŧ
Lane Group	WBL	WBT	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	26	37	558	37	42	1905
v/c Ratio	0.25	0.08	0.18	0.03	0.06	0.44
Control Delay	48.7	0.4	1.9	0.7	2.0	2.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	48.7	0.4	1.9	0.7	2.0	2.6
Queue Length 50th (ft)	16	0	27	0	3	87
Queue Length 95th (ft)	42	0	45	5	10	127
Internal Link Dist (ft)		1179	750			300
Turn Bay Length (ft)					175	
Base Capacity (vph)	352	665	3031	1361	707	4356
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.07	0.06	0.18	0.03	0.06	0.44
Intersection Summary						

	1	*	1	1	Ŧ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	16	32	584	32	1900
v/c Ratio	0.14	0.22	0.13	0.05	0.42
Control Delay	46.2	18.6	1.2	1.6	1.9
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	46.2	18.6	1.2	1.6	1.9
Queue Length 50th (ft)	10	0	16	2	79
Queue Length 95th (ft)	31	29	26	7	110
Internal Link Dist (ft)	928		170		420
Turn Bay Length (ft)	75			265	
Base Capacity (vph)	442	435	4531	703	4561
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.04	0.07	0.13	0.05	0.42
Intersection Summary					

	٨	→	\mathbf{r}	4	+	*	1	t	1	ţ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	353	416	342	179	432	100	105	205	558	742	611	
v/c Ratio	0.75	0.37	0.52	0.76	0.39	0.16	0.45	0.36	0.93	0.67	0.79	
Control Delay	53.4	28.7	12.5	63.4	29.0	0.6	25.6	32.5	48.5	33.0	18.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	53.4	28.7	12.5	63.4	29.0	0.6	25.6	32.5	48.5	33.0	18.8	
Queue Length 50th (ft)	113	112	51	111	116	0	39	51	275	214	122	
Queue Length 95th (ft)	#191	156	138	#232	162	0	70	83	#466	273	273	
Internal Link Dist (ft)		216			267			1225		310		
Turn Bay Length (ft)	160			215		215	280		215			
Base Capacity (vph)	469	1114	660	237	1104	621	234	709	598	1167	790	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.75	0.37	0.52	0.76	0.39	0.16	0.45	0.29	0.93	0.64	0.77	
Intersection Summary												

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٠	-	~	1	-	*	•	t	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	32	5	5	79	5	116	11	1289	126	132	589	37
v/c Ratio	0.21	0.02	0.02	0.51	0.02	0.42	0.02	0.55	0.12	0.39	0.21	0.03
Control Delay	42.0	37.4	0.2	52.8	37.4	12.3	7.6	10.6	1.8	6.2	3.1	1.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	42.0	37.4	0.2	52.8	37.4	12.3	7.6	10.6	1.8	6.2	3.1	1.1
Queue Length 50th (ft)	19	3	0	48	3	0	2	201	0	15	38	0
Queue Length 95th (ft)	46	13	0	91	13	48	10	322	22	35	67	7
Internal Link Dist (ft)		268			1785			876			418	
Turn Bay Length (ft)	75			125		125	180			135		
Base Capacity (vph)	351	465	452	351	465	482	532	2355	1095	342	2797	1258
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.09	0.01	0.01	0.23	0.01	0.24	0.02	0.55	0.12	0.39	0.21	0.03
Intersection Summary												

	٭	7	1	1	ŧ
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Group Flow (vph)	31	16	5	1516	745
v/c Ratio	0.24	0.12	0.01	0.33	0.16
Control Delay	47.6	21.4	1.8	1.9	1.5
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	47.6	21.4	1.8	1.9	1.5
Queue Length 50th (ft)	19	0	0	61	24
Queue Length 95th (ft)	47	20	2	88	38
Internal Link Dist (ft)	1107			1070	450
Turn Bay Length (ft)	50		50		
Base Capacity (vph)	442	407	592	4527	4523
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.07	0.04	0.01	0.33	0.16
Intersection Summary					

	1	-	1	1	1	Ŧ
Lane Group	WBL	WBT	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	47	147	1489	74	21	784
v/c Ratio	0.29	0.64	0.54	0.06	0.10	0.20
Control Delay	42.8	39.8	5.4	1.0	4.7	3.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	42.8	39.8	5.4	1.0	4.7	3.2
Queue Length 50th (ft)	28	59	147	0	2	36
Queue Length 95th (ft)	60	116	253	11	11	64
Internal Link Dist (ft)		1179	750			300
Turn Bay Length (ft)					175	
Base Capacity (vph)	352	433	2772	1256	217	3983
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.13	0.34	0.54	0.06	0.10	0.20
Intersection Summary						

	1	*	1	1	ŧ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	37	42	1537	26	784
v/c Ratio	0.28	0.27	0.35	0.11	0.18
Control Delay	48.1	17.5	2.3	3.1	1.8
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	48.1	17.5	2.3	3.1	1.8
Queue Length 50th (ft)	23	0	64	2	27
Queue Length 95th (ft)	53	32	93	9	42
Internal Link Dist (ft)	928		170		420
Turn Bay Length (ft)	75			265	
Base Capacity (vph)	442	427	4339	240	4347
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.08	0.10	0.35	0.11	0.18
Intersection Summary					

	٠	-	7	*	-	*	1	1	1	Ŧ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	600	689	95	68	463	279	468	853	221	347	368	
v/c Ratio	0.91	0.57	0.15	0.45	0.56	0.49	0.90	0.86	0.88	0.42	0.58	
Control Delay	59.5	30.8	2.6	52.7	37.0	7.9	43.5	42.0	56.9	33.9	8.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	59.5	30.8	2.6	52.7	37.0	7.9	43.5	42.0	56.9	33.9	8.7	
Queue Length 50th (ft)	197	201	0	42	138	6	208	254	86	96	12	
Queue Length 95th (ft)	#308	266	19	85	190	72	#383	331	#217	139	89	
Internal Link Dist (ft)		216			267			1225		310		
Turn Bay Length (ft)	160			215		215	280		215			
Base Capacity (vph)	660	1210	627	177	825	574	521	1051	251	884	653	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.91	0.57	0.15	0.38	0.56	0.49	0.90	0.81	0.88	0.39	0.56	
Internetion Comments												

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٨	-	\mathbf{r}	•	-	×.	1	Ť	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	37	21	21	205	11	137	11	387	68	116	1581	21
v/c Ratio	0.14	0.06	0.06	0.76	0.03	0.33	0.07	0.19	0.07	0.17	0.63	0.02
Control Delay	32.2	30.6	0.3	55.8	29.8	7.7	12.9	10.8	2.6	6.1	10.0	2.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	32.2	30.6	0.3	55.8	29.8	7.7	12.9	10.8	2.6	6.1	10.0	2.4
Queue Length 50th (ft)	20	11	0	124	6	0	3	58	0	21	251	0
Queue Length 95th (ft)	44	29	0	192	20	46	14	92	17	45	377	8
Internal Link Dist (ft)		268			1785			876			418	
Turn Bay Length (ft)	75			125		125	180			135		
Base Capacity (vph)	349	465	452	346	465	498	150	2067	956	694	2497	1123
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.11	0.05	0.05	0.59	0.02	0.28	0.07	0.19	0.07	0.17	0.63	0.02
Intersection Summary												

	٠	7	1	1	ŧ
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Group Flow (vph)	16	16	38	520	2101
v/c Ratio	0.14	0.14	0.29	0.11	0.46
Control Delay	46.3	23.9	8.1	1.2	2.1
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	46.3	23.9	8.1	1.2	2.1
Queue Length 50th (ft)	10	1	4	15	94
Queue Length 95th (ft)	31	21	19	23	127
Internal Link Dist (ft)	1107			1070	450
Turn Bay Length (ft)	50		50		
Base Capacity (vph)	442	407	132	4563	4546
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.04	0.04	0.29	0.11	0.46
Intersection Summary					

Queues 4: Washington St & Boyer's Driveway/E 73rd Ave

	≯	-	*		1	t t	1	1	+	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	43	89	26	37	47	528	37	42	1912	
v/c Ratio	0.33	0.51	0.21	0.07	0.32	0.18	0.03	0.06	0.45	
Control Delay	47.3	41.8	43.8	0.3	10.2	2.5	1.0	2.8	3.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	47.3	41.8	43.8	0.3	10.2	2.5	1.0	2.8	3.5	
Queue Length 50th (ft)	26	40	16	0	6	31	0	4	105	
Queue Length 95th (ft)	58	86	40	0	32	56	7	14	166	
Internal Link Dist (ft)		101		1179		750			300	
Turn Bay Length (ft)	40				60			175		
Base Capacity (vph)	341	413	325	682	147	2951	1326	708	4222	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.13	0.22	0.08	0.05	0.32	0.18	0.03	0.06	0.45	
Intersection Summary										

	1	*	1	1	ŧ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	16	32	602	32	1932
v/c Ratio	0.14	0.22	0.13	0.05	0.42
Control Delay	46.2	18.6	1.2	1.6	1.9
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	46.2	18.6	1.2	1.6	1.9
Queue Length 50th (ft)	10	0	17	2	81
Queue Length 95th (ft)	31	29	27	7	113
Internal Link Dist (ft)	928		170		420
Turn Bay Length (ft)	75			265	
Base Capacity (vph)	442	435	4536	690	4561
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.04	0.07	0.13	0.05	0.42
Intersection Summary					

	٠	+	*	4	+	•	1	t	1	Ļ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	358	416	342	179	432	102	105	216	562	760	620	
v/c Ratio	0.76	0.38	0.52	0.76	0.39	0.17	0.45	0.37	0.94	0.68	0.80	
Control Delay	54.2	28.8	12.7	64.1	29.1	0.6	25.6	33.4	50.4	33.2	19.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	54.2	28.8	12.7	64.1	29.1	0.6	25.6	33.4	50.4	33.2	19.6	
Queue Length 50th (ft)	115	112	52	112	116	0	39	55	275	220	129	
Queue Length 95th (ft)	#195	156	140	#232	162	0	70	88	#481	281	284	
Internal Link Dist (ft)		216			267			1225		310		
Turn Bay Length (ft)	160			215		215	280		215			
Base Capacity (vph)	468	1109	656	235	1097	618	233	708	595	1167	790	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.76	0.38	0.52	0.76	0.39	0.17	0.45	0.31	0.94	0.65	0.78	
Intersection Summary												

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٨	+	*	4	+	*	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	32	5	5	79	5	116	11	1297	126	132	601	37
v/c Ratio	0.21	0.02	0.02	0.51	0.02	0.42	0.02	0.55	0.12	0.39	0.21	0.03
Control Delay	42.0	37.4	0.2	52.8	37.4	12.3	7.6	10.7	1.8	6.3	3.1	1.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	42.0	37.4	0.2	52.8	37.4	12.3	7.6	10.7	1.8	6.3	3.1	1.1
Queue Length 50th (ft)	19	3	0	48	3	0	2	203	0	15	39	0
Queue Length 95th (ft)	46	13	0	91	13	48	10	326	22	35	70	7
Internal Link Dist (ft)		268			1785			876			418	
Turn Bay Length (ft)	75			125		125	180			135		
Base Capacity (vph)	351	465	452	351	465	482	526	2354	1095	340	2797	1258
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.09	0.01	0.01	0.23	0.01	0.24	0.02	0.55	0.12	0.39	0.21	0.03
Intersection Summary												

	٠	7	1	1	Ŧ
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Group Flow (vph)	31	16	5	1523	756
v/c Ratio	0.24	0.12	0.01	0.34	0.17
Control Delay	47.6	21.4	1.8	1.9	1.5
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	47.6	21.4	1.8	1.9	1.5
Queue Length 50th (ft)	19	0	0	62	25
Queue Length 95th (ft)	47	20	2	89	38
Internal Link Dist (ft)	1107			1070	450
Turn Bay Length (ft)	50		50		
Base Capacity (vph)	442	407	585	4527	4523
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.07	0.04	0.01	0.34	0.17
Intersection Summary					

Queues 4: Washington St & Boyer's Driveway/E 73rd Ave

	≯	-	1	-	1	t t	1	1	+	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	18	40	47	147	36	1479	74	21	796	
v/c Ratio	0.17	0.10	0.30	0.64	0.07	0.53	0.06	0.10	0.20	
Control Delay	41.0	0.5	43.5	39.3	3.7	5.3	1.0	4.6	3.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	41.0	0.5	43.5	39.3	3.7	5.3	1.0	4.6	3.2	
Queue Length 50th (ft)	11	0	28	58	4	144	0	2	36	
Queue Length 95th (ft)	30	0	60	115	15	250	11	11	64	
Internal Link Dist (ft)		101		1179		750			300	
Turn Bay Length (ft)	40				60			175		
Base Capacity (vph)	232	572	340	434	495	2776	1257	220	3968	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.08	0.07	0.14	0.34	0.07	0.53	0.06	0.10	0.20	
Intersection Summary										

	1	*	Ť	1	Ŧ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	37	42	1562	26	803
v/c Ratio	0.28	0.27	0.36	0.11	0.18
Control Delay	48.1	17.5	2.3	3.2	1.8
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	48.1	17.5	2.3	3.2	1.8
Queue Length 50th (ft)	23	0	65	2	27
Queue Length 95th (ft)	53	32	96	9	43
Internal Link Dist (ft)	928		170		420
Turn Bay Length (ft)	75			265	
Base Capacity (vph)	442	427	4339	234	4347
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.08	0.10	0.36	0.11	0.18
Intersection Summary					

	٠	+	7	4	+	•	1	t	1	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	607	689	95	68	463	282	468	868	224	358	374	
v/c Ratio	0.91	0.57	0.15	0.45	0.57	0.50	0.91	0.86	0.89	0.43	0.59	
Control Delay	60.3	30.9	2.6	52.7	37.3	8.4	44.3	42.6	59.3	33.9	9.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	60.3	30.9	2.6	52.7	37.3	8.4	44.3	42.6	59.3	33.9	9.1	
Queue Length 50th (ft)	200	201	0	42	138	8	208	261	87	100	15	
Queue Length 95th (ft)	#313	266	19	85	190	76	#388	338	#224	143	96	
Internal Link Dist (ft)		216			267			1225		310		
Turn Bay Length (ft)	160			215		215	280		215			
Base Capacity (vph)	664	1203	624	177	815	569	517	1052	251	884	653	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.91	0.57	0.15	0.38	0.57	0.50	0.91	0.83	0.89	0.40	0.57	
Intersection Summary												

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.